Piezo-semiconducting nanowires integration into flexible nanogenerators for mechanical energy harvesting

Guylaine POULIN-VITTRANT Directrice de Recherche CNRS Laboratoire GREMAN <u>http://greman.univ-tours.fr</u> (UMR 7347 CNRS, Université de Tours, INSA-CVL) <u>guylaine.poulin-vittrant@univ-tours.fr</u>

Part of the Heckman Diagram Jong et al., Sci. Data 2:150053 (2015)

centrosymmetric crystal

non-centrosymmetric crystal

GREMA

Inverse effect

Macro Fibre Composites (1993) [Wil04]

Piezocomposites (early 90's)

GREMAN matériaux microélectronique

G. Poulin-Vittrant

Nanowires (2006)

Or

Monocristals (early 2000)

Macro Fibre Composites (1993) [Wil04]

Piezocomposites (early 90's)

PVDF

30

PZN-9PT

2500

AIN

7

KNN

200

Nanowires (2006)

GREMAN

otMagn DetWD Exp 40x SE 5.9 1 Marzencki et al. Thin films

Material

(10⁻¹² m/V)

 d_{33}

(early 2000)

Quartz

2,3

PbTiO₃

120

BaTiO₃

90

PZT

300 à 700

MFC

400

(PZT-5A: 440)

G. Poulin-Vittrant

Mechanical energy harvesting

Example: Human power – shoe insert (Shenck, MS Thesis, 1999)

- 2 THUNDER (76×51×0.635mm³) PZT unimorphs connected in parallel and mounted on opposing sides of a Be-Cu backplate
- 8.4 mW at 0.9 Hz into 500 $k\Omega$

GRFMA

Output of a piezoelectric rod when submitted to a slow compressive stress

Z. L. Wang and J. Song, Science 312 (2006) 242-246

Wang, Georgia Tech : ZnO nanowires $\emptyset = 0.03$ to 0.10 µm L = 1 to 3 µm 6 mm² device \rightarrow 10 mV, 800 nA \rightarrow power of a few nW

http://www.nanoscience.gatech.edu/

Adapted from ZL Wang et al., Angew. Chem. Int. Ed. 51 (2012) 2–24

Owing to non-center symmetric crystal structure of the wurtzite semiconductors, **piezo polarization direction is parallel to c axis.**

<u>Mechanical excitation modes:</u> 2 main modes, or a combination of both

Electrical configurations: Schottky contact or capacitive coupling

Transverse

Force

GREMAN

A **NW** array embedded in a polymer matrix, between electrodes and on a rigid or flexible substrate. Various configurations :

Nanogenerators structure

✓ Highly orientated along polar axis

✓ Strong NW adhesion to substrate

✓ High quality ZnO NWs : intensive research on how to decrease the intrinsic N-type doping of ZnO NWs (usually 10¹⁸cm⁻³) by 1 or 2 decades
 ✓ If flexible substrate : low temperature process

Nanogenerators structure

Nanogenerators structure

Top contact

✓ Good adhesion on polymer

- ✓ Electrically conductive
- ✓ Mechanically robust

Example: Ti/Al electrode deposited by sputtering

✓ Flexible if the whole NG is \Rightarrow research on flexible electronics

Polymer matrix

ZnO NWs

Dahiya, et al., Adv. Mat. Tech. (2017) 1700249

Nanogenerators functional characterization

Example of dedicated test benches

Test bench in compression [1]

- Compressive force in contact or impact mode
- Voltage measured via a high input impedance circuit [ex: Nadaud et al. Appl. Phys. Lett. 112 (2018) 063901]
- Variable resistive load

[1] A. S. Dahiya, et al., Adv. Mat. Tech. (2017) 1700249[2] N. Gogneau et al., Semicond. Sci. Technol. 31 (2016) 103002

• **Bending force** but the force seen by NWs depends on their orientation and environment (properties of the substrate and encapsulating layer)

G. Zhu et al., Nano Lett. 2010, 3151-3155

Nanogenerators functional characterization

Typical output characteristics

² Durability test

GRFM

- Pressure sensitivity in V/kPa
 And for a given force (shape, frequency, amplitude):
- Short circuit current and open circuit voltage
- Output peak power @ given load
- Average peak power @ given load

Varying compressive Force

Nanogenerators functional characterization

Typical output characteristics

Under a defined mechanical excitation:

V _{peak} (V)	V _{RMS (max)} (V)	I _{sc (RMS)} (nA)	P _{av (max)} (nW)	W (nJ)	R _{opt} (MΩ)
3.9	1.8	15	29	5.8	>100
6.8	2.7	28	64	12.8	>100

RMS and average values should be prefered to peak values

Pressure sensitivity in V/kPa
 And for a given force (shape, frequency, amplitude):

To move toward standardization!

- Short circuit current and open circuit voltage
- Output peak power @ given load
- Average peak power @ given load

Nanogenerators performances

- \checkmark Large variety of mechanical testing conditions (compression, bending)
- ✓ Mostly under compression: 1-10 µW/cm² @ a few N force @ 0.3 to 5 Hz [S. S. Indira et al., Nanomaterials 9 (2019) 773]

 Comparison with bending cantilevers 10^{-3} to $10 \,\mu$ W/(cm².Hz.g²)

(base of a machine tool : $10 \text{ m/s}^2 \approx 1g$)

[S. Priya et al., Energy Harvesting and Systems 2017; 4(1): 3–39]

Nanogenerators: how to choose the right material?

✓ Large literature on ZnO nanowires /nanorods grown by **chemical or physical methods**

H. D. Espinosa et al., Adv. Mater. 24 (2012) 4656-4675 A. J. L. Garcia, M. Mouis, V. Consonni, G. Ardila, Nanomaterials, 11(4) (2021) 941

✓ Other piezo materials with various synthesis methods: GaN, PZT, CdS, CdSe, PVDF (electro-spinning)...
 Effect of nanostructuration:

Matáriau	Matériau massif (expérimental)	Echelle nanoscopique (expérimental)		
wateriau	d ₃₃ (10 ⁻¹² m/V)	E (GPa)	d ₃₃ (10 ⁻¹² m/V)	E (GPa)	
ZnO	9.93	164	14-26.7	100	
GaN	1.86	397	12.8	43.9	
PZT	650	N/A	101	46.4-99.3	
PVDF	-25	N/A	-38	0.39	

R. Hinchet et al., In IEEE 2012 Int. Electron Devices Meeting, 6.2.1-6.2.4

E. L. Perez, PhD Univ. Grenoble Alpes (2016)

Nanogenerators: is there a figure of merit?

 Figure of merit: a numerical expression based on one or more characteristics of a device, material or procedure, that represents its performance or efficiency

$$FoM = \frac{d_{31}^2}{\varepsilon_{33}tan\delta} = \frac{d_{31}g_{31}}{tan\delta}$$

From S. Priya, IEEE Trans. Ultrason. Ferro. Freq. Control 57(12) (2010) 2610-2612

Material		Bulk				Nano			
Property	d31 [m/V]	epsilon33r	tan(delta) [%]	FoM [1e-12]	d31 [m/V]	epsilon33r	tan(delta) [%]	FoM [1e-12]	
PZT	-2,30E-10	2900) 2	108	-3,83E-11	2900	2	3	
PVDF	3,98E-12	6,8	3 20	1	6,05E-12	6,8	20	3	
ZnO	-5,43E-12	12,6	5 1	26	1,4E-11	. 12,6	1	176	
GaN	-1,50E-12	8,9	1	3	1,28E-11	. 8,9	1	208	

⇒ Low permittivity can benefit to materials having lower piezo coefficients.

Downscaling does not have the same effect for all materials!

✓ But: established on specific quasi-static mechanical cycle...

... and is it applicable to nanomaterials?

Nanomaterials properties

• Higher mechanical properties: Young modulus

Experimental / Review: H. D. Espinosa et al., Adv. Mater. 24 (2012) 4656-4675

Nanomaterials properties

• Higher mechanical properties: Young modulus, fracture strength

Experimental / Review: H. D. Espinosa et al., Adv. Mater. 24 (2012) 4656-4675

Nanomaterials properties

- Higher mechanical properties: Young modulus, fracture strength
- Exhalted piezoelectric coefficients at smallest diameters ⇒ Higher sensitivity to deformation without plastic damage

ZnO

Piezoelectric coefficients (experimental and computational) for different characteristic sizes.

Values are normalized with respect to the corresponding value for bulk ZnO, indicated by a horizontal line.

H. D. Espinosa et al., Adv. Mater. 24 (2012) 4656-4675

 Experimental evaluation of mechanical, electrical and piezoelectric properties of NWs by dedicated methods

Electrical properties: single nanowire based Field Effect Transistors characterization

 Experimental evaluation of mechanical, electrical and piezoelectric properties of NWs by dedicated methods

Electrical properties: single nanowire based Field Effect Transistors characterization

$$n_e \approx \frac{C_{NW}V_{TH}}{2\pi r^2 L}$$

n_e : free charge carriers density
 C_{NW} : channel capacitance (nanowire)
 V_{TH} : threshold voltage
 r : nanowire radius
 L : channel length

 Experimental evaluation of mechanical, electrical and piezoelectric properties of NWs by dedicated methods

Mechanical properties

In situ TEM experiments and MEMS testing platform coupled with atomistic simulations

R. Agrawal et al., Nano Lett 2008, 8, 3668-3674

Nanowire loading (tension or buckling) by AFM cantilever and micromanipulator

In situ TEM and micromanipulator to measure the NW resonance frequency

X D. Bai et al., Appl. Phys. Lett. 82 :4806, 2003.

 Experimental evaluation of mechanical, electrical and piezoelectric properties of NWs by dedicated methods

Piezoelectric properties

GRFMA

M. Minary-Jolandan et al., NanoLett. 12 (2012) 970-976

Z.L. Wang, Science 2006; X. Xu et al. , Nanotechnology 22 (2011) 105704 (8pp)

Experimental evaluation of electromechanical conversion properties of NWs

AFM with electrical module: The main used technique to characterize NWs as energy harvesters

Measurement based on Schottky diode which regulates the charge flow \Rightarrow NW bending/releasing creates an alternating flow of charges in the external circuit.

Z. L. Wang et al. Science (2006) doi:10.1126/science.1124005

Schottky diode influenced by material characteristics

- Semiconductor material polarity
- Type of doping
- Applied deformation

Schottky diode influences the energy harvesting efficiency Nano-contact effects

N. Gogneau et al. Semicond. Sci. Technol. 31 (2016) 103002 N. Jamond et al., Nanoscale, 9 (2017) 4610-4619

Experimental evaluation of electromechanical conversion properties of NWs

AFM with electrical module: the main used technique to characterize NWs as energy harvesters

N. Gogneau et al., Semicond. Sci. Technol. 31 (2016) 103002

2D mapping @ different forces

NW should have: High aspect ratio

NW should have: Uniform polarity

ZnO

With Chemical Bath Deposition (CBD), the polarity of ZnO NWs **depends on the polarity of** patterned c-plane ZnO single crystals of **the nucleation layer.**

With vapor-phase deposition techniques, ZnO NWs are Zn-polar even on a O-polar seed layer.

V. Consonni et al., ACS Nano vol. 8, no. 5, 4761–4770 (2014) The NW array should have uniform polarity to have a cumulative effect on the electric potential of the full device.

V. Consonni and A. M. Lord, Nano Energy (2020) https://doi.org/10.1016/j.nanoen.2021.105789

NW should have: Uniform polarity

GaN

N-polar GaN NWs were grown by plasma-assisted molecular beam epitaxy (PAMBE) On 2.5-nm-thick AIN covered Si(111) substrates Substrate temperature: 800°C Growth under N-rich condition with

an N/Ga ratio of about 1.36

Opposite behavior to **Zn-polar ZnO NWs:**

NW should have: Optimal density

• Literature:

1-3 piezo composite ultrasonic transducers : higher converted energy than bulk piezo material.

Existence of an optimal density (ratio of NWs over total volume or surface).

Same tendency for piezo composite harvesters

R.E. Newnham et al., Mat. Res Bull. 13 (1978) 525-536

H J Lee et al., Sensors 2014, 14 14526-14552

NW should have: Good alignment and uniformity... up to selective area growth

How to grow well-organized nanostructures? Using prepatterned polar c-plane ZnO single crystals

Example:

Substrates : ZnO bulk single crystals from Crystec with O-polar and Zn-polar crystal orientations + silicon dioxide SiOx layer with a thickness of 30 nm (by plasma-enhanced CVD)

+ silicon nitride Si_xN_y layer (acting as a selective mask) with a thickness of 60 nm (by plasma-enhanced CVD)

+ holes (from 50 nm to 1 μ m) in the mask defined and opened by Electron beam lithography (EBL) followed by reactive ion etching (RIE)

Other seed layers (Au) and methods (Block copolymers) to prepare patterned seed layers...

NW should have: Low doping

Defects ⇒ intrinsic N-type doping, high conductivity, both lowering nanogenerator performance

J. Villafuerte et al. The Journal of Physical Chemistry C 124, 16652-16662 (2020)

NW should have: Low doping

Defects ⇒ intrinsic N-type doping & high conductivity, both lowering nanogenerator performance

Stars: experimental data Solid lines: range used for simulation TE = thermal evaporation

Nature and origin of defects? Still in debate.

During CBD, incorporation of hydrogen in the center of ZnO NWs during growth? Carbon and nitrogen contained in chemical precursors?

GREMA

NW environment:

Electrodes and encapsulating layer electrical and mechanical properties

⇒ Design and guideline rules

✓ Heterostructured NWs

Highly homogeneous In-rich In_{0.35}Ga_{0.65}N insertions in GaN nanowires

Piezo-Conversion mode

The piezo-conversion of InGaN/GaN NWs is 30% more efficient than GaN.

N. Jegenyes et al., Nanomaterials 8(6) (2018) 367, doi: 10.3390/nano8060367

✓ Doping of NWs

Intentional doping for further enhancement of piezoelectric conversion properties

X. Li et al., Nanomaterials 2018, 8, 188, doi:10.3390/nano8040188

S. Goel, B. Kumar, J. of Alloys and Compounds 816 (2020) 152491

In ZnO: the high free electron density coming mainly from hydrogen should be decreased.

Ex: Compensating doping with Cu to decrease the free electron density in ZnO NWs grown by chemical bath deposition.

C. Lausecker et al. Inorganic Chemistry 60, 1612-1623 (2021)

✓ Additional surface charges

Fermi Level Pinning (FLP) is an hypothesis to explain the contradiction between experimental and theoretical results

(at realistic doping levels (10¹⁸cm⁻³), significant levels of voltage are measured across the nanogenerator).

FLP : commonly exists at the surface of III-V and II-VI semiconductor compounds
At the surface of n-type ZnO NWs, oxygen molecules get negatively charged by capturing the free electrons from NW core.
⇒ low-conductivity depletion layer near the surface

⇒ screening of piezoelectric potential is suppressed.

[14]

✓ Additional surface charges

Fermi Level Pinning (FLP)

R. Tao et al., Adv. Electron. Mater. 2017, 1700299

✓ Flexoelectricity

Links **strain gradients** to polarization. Exists in all dielectrics, even in non-piezoelectric materials.

Q. Deng et al., Int. J. of Solids and Structures 51 (2014) 3218–3225

J. Zhang et al. Nano Energy (2021) doi: 10.1016/j.nanoen.2020.105489

Conclusion: ZnO, a multifunctional material

Mechanical sensor

GREMA

Y. Leprince-Wang et al., NanoWorld J 6(1): 1-6 (2020)

Gas sensor

Y. Hu, Adv. Mater. 2010, 22, 3327–3332

UV sensor

pH sensor

A. Fulati, MSc thesis 2010, ISBN: 978-91-7393-369-8

Conclusion: ZnO, a multifunctional material

... and much more...

Z. L. Wang, Adv. Mater. 2012, 24, 4632–4646