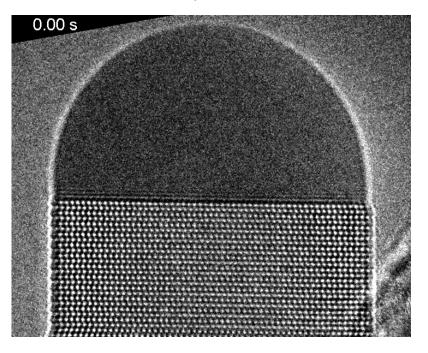


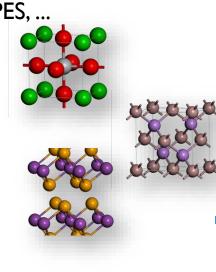
Table ronde "recherche fondamentale - industrie" Prof. Dr. Clement MERCKLING 08/07/2021

Epitaxy @ center of technologies



PHYSICAL REVIEW LETTERS 121, 166101 (2018)

Editors' Suggestion Featured in Physics


Atomic Step Flow on a Nanofacet

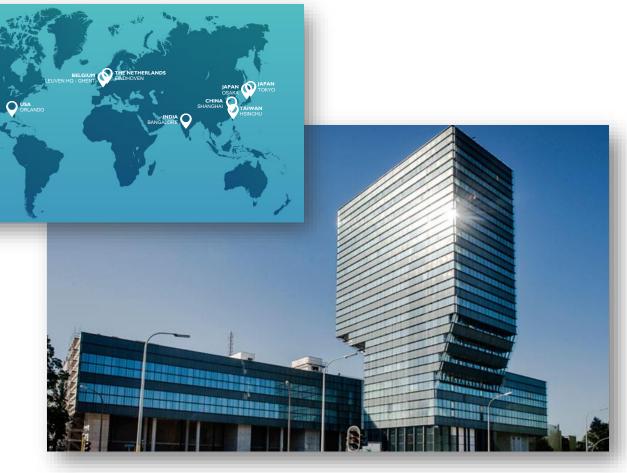
Jean-Christophe Harmand,^{1,*} Gilles Patriarche,¹ Frank Glas,¹ Federico Panciera,¹ Ileana Florea,² Jean-Luc Maurice,² Laurent Travers,¹ and Yannick Ollivier¹ ¹Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, Avenue de la Vauve, 91120 Palaiseau, France ²Laboratoire de Physique des Interfaces et des Couches Minces, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France

Personal experience

- Core competence: Crystal growth (epitaxy) of thin films at atomic scale
 - Started epitaxy in 2004 (INL / ST)
 - Pursued at imec since 2007
- Technics
 - MBE, MOVPE, PLD
- Characterizations
 - RHEED, XRD, PL, AFM, XPS, ARPES, .
- Materials
 - Crystalline oxides
 - Semiconductors
 - Van der Waals compounds
 - Surfaces & interfaces science

- Additional skills
 - ab-initio simulations
 - Devices & applications
 - Logic, Photonic, Quantum, ...
- Scientific communications
 - *h*-index = 35
 - # total peer review publications: 155
 - # first author publications: 22
 - # last author publications: **I I**
 - # patents: **I 5**
 - # book chapter: I
 - # invited talks in international conferences: 15
 - Mentoring & Leadership

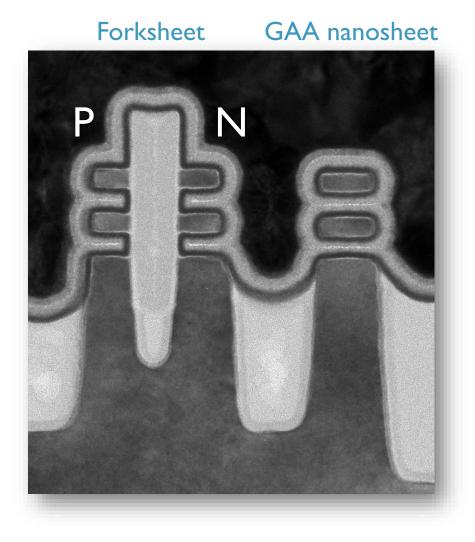
nGaA


l n :

Si

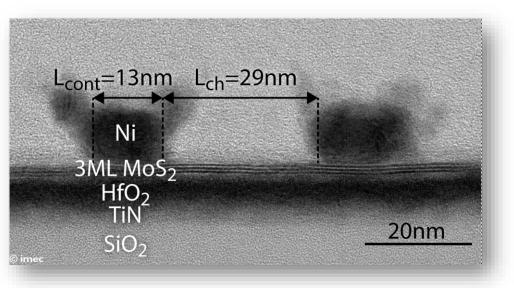
Imec in a nutshell

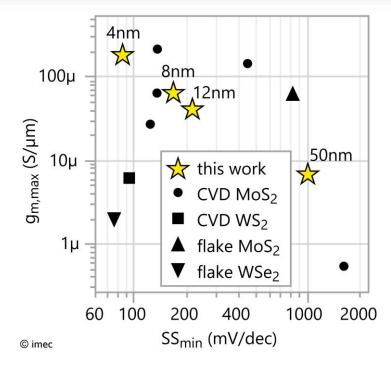
- imec
 - Started in 1984 (initial staff: 70 persons)
 - 5000 imec'ers
 - 74 Nationalities
 - Worldwide implantation
- Finances
 - > 700 M€
 - ~I 5% Flanders government
- Main activity
 - R&D and innovation hub in nanoelectronics and digital technology
- Core competences
 - Driving microchip miniaturization
 - Internet of everything
 - Smart health
 - Smart automotive
 - Smart city
 - Smart technology
 - Smart energy



Advanced CMOS SiGe

- The forksheet device has recently been proposed as the most promising device architecture to extend the GAA nanosheet device generation with additional scaling and performance beyond 2nm technology node.
- Unlike nanosheet devices, the sheets are now controlled by a tri-gate forked structure – realized by introducing a *dielectric wall* in between the p- and nMOS devices before gate patterning. This wall physically isolates the p-gate trench from the n-gate trench, allowing a much tighter n-to-p spacing than what is possible with either FinFET or nanosheet devices.

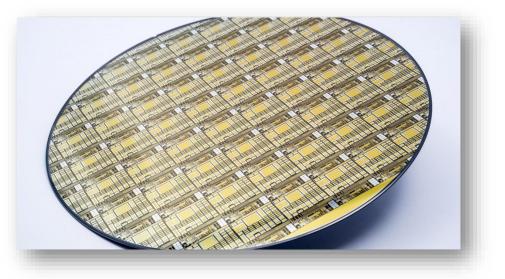


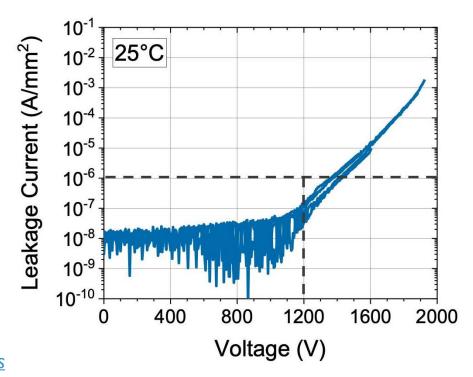

https://www.imec-int.com/en/press/imec-reports-first-electricaldemonstration-integrated-forksheet-devices-extend-nanosheets

Beyond CMOS 2D materials

- MoS₂ is a 2D material, meaning that it can be grown in stable form with nearly **atomic thickness** and atomic precision.
- Imec synthesized the material down to monolayer (0.6nm thickness) and fabricated devices with scaled contact and channel length, as small as 13nm and 30nm respectively.
- These very scaled dimensions, combined with scaled high-k oxide gate thickness, have enabled the demonstration of some of the best device performances so far.

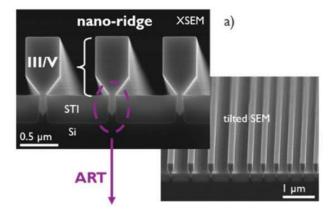
<u>https://www.imec-int.com/en/articles/imec-shows-excellent-performance-in-ultra-scaled-fets-with-2d-material-channel</u>

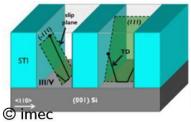


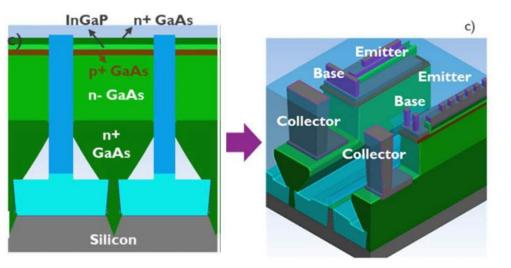

Power electronic GaN

- Wide-bandgap materials gallium-nitride (GaN) and silicon-carbide (SiC) have proved their value as nextgeneration semiconductors for power-demanding applications.
- SiC-based technology is the most mature, but it is also more expensive. Over the years tremendous progress has been made with GaN-based technology grown on for example 200mm Si wafers.
- However, achieving operating voltages higher than 650V has been challenged by the difficulty of growing thickenough GaN buffer layers on 200mm wafers.
- The manufacturability of 1200V-qualified buffer layers opens doors to highest voltage GaN-based power applications such as electric cars, previously only feasible with silicon-carbide (SiC)-based technology.

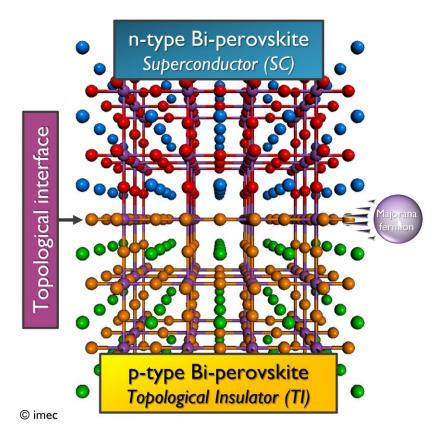
https://www.imec-int.com/en/press/imec-and-aixtron-demonstrate-200-mm-gan-epitaxy-aix-g5-c-1200v-applications-breakdown-excess






Beyond 5G RF Front-End Modules III-V's

- To enable the next-generation RF front-end modules beyond 5G, imec explores CMOS-compatible III-V-on-Si technology
- Functional GaAs/InGaP HBT devices grown on 300mm Si have been demonstrated as a first step towards the enablement of InP-based devices.
- A low defect density device stack with below 3x10⁶ cm⁻² threading dislocation density was obtained by using III-V nano-ridge engineering (NRE) process.
- The devices perform considerably better than reference devices, with GaAs fabricated on Si substrates with strain relaxed buffer (SRB) layers.



Quantum computing

Oxides

- Within the project called NOTICE (for Novel Oxides and Topological Interfaces for quantum Computing Electronics), we follow an innovative route for generating Majorana fermions.
- This route will answer today's major blocking points, being the stability and oxidation of the SOC materials, and the **defectivity** of the interface between the SOC and superconducting materials.
- Groundbreaking idea is to use novel and stable oxide materials

 i.e., a bismuth-based 'perovskite' oxide as the basis for both the superconductor (by p-type doping) and topological insulator (by n-type doping).
- This material system combination is expected to create a perfect epitaxial interface, at which the Majorana fermions will be generated.

<u>https://www.imec-int.com/en/articles/prestigious-european-erc-consolidator-</u> grant-awarded-to-imec-s-clement-merckling-for-developing-fault-tolerant-qubits

10

UNDEC embracing a better life