

Epitaxy and strain engineering of GeSn/SiGeSn for Optoelectronics

" Extending the Silicon "world"

- Si-Ge-Sn a multifunctional alloy-

An introduction

Dan Buca, D. Grützmacher

Member of the Helmholtz Association

- Facts and figures
- Employees
- Budget

% is

- 38,237 (in 18 centres)
- € 4,45 billion

of which more than 30

third-party funds

The brain

Imaging Core Facility (ICF) (8T MRT)

Energy

Atmosphere and climate

Key infrastructure facilities

Ernst Ruska Center for electron microscopy

Information Technology

Biggest problems of information society:

Data security

Electrical power consumption

Stromverbrauch im Vergleich

Angaben in Milliarden Kilowattstunden im Jahr 2011

Quelle: Greenpeace USA

Der Tagesspiegel/Pieper-Meyer

Energy!

- Electrical Power Consumption of IT Products in comparison to the total electrical power consumption of the world:
- < 1% in 2000
- ~ 1.5% in 2006
- > 10% in 2012
- within 10 years we will consume the equivalent of 100% of todays electrical power only for IT products, or only for the internet by 2030 (My daughter "uses" >30 Gb /month)

Today there are more IT products connected to the internet than people on earth

Forecast says that will **increase by a factor of 10 within the next 5 years** Predictions before COVID : digital schooling

=> Enormous increase data volume => Problems: energy and bandwidth

Electronics

energy efficiency of the most advanced microelectronics pJ/bit

information "carrier" is an electron (energy dissipation) Driving force for μ -e evolution:

- Increase performance (scaling)
- Reduce power consumption

TFETs

NW electronics

"Green IT"

Electronics

energy efficiency of the most advanced microelectronics pJ/bit

information "carrier" is an electron (energy dissipation) Large losses: "transport" of information

energy efficiency of the most advanced microelectronics pJ/bit

information "carrier" is an electron (energy dissipation)

Large losses: "transport" of information

Design/architecture (Apple M1)

system on chip (SoC)

Si-Photonics

energy efficiency of the most advanced microelectronics pJ/bit

information "carrier" is an electron (energy dissipation)

photon-based technologies the energy budget is < fJ/bit

information "carrier" is a **photon**

Photonics

energy efficiency of the most advanced microelectronics pJ/bit

photon-based technologies the energy budget is < fJ/bit

Frequency spectrum is ~10,000 higher for photons than electrons

Photonic chip: more data and far more energy efficiently

Photonics

energy dissipation

photon-based technologies the energy budget is < fJ/bit

Energy harvesters – thermoelectric

Photonics

energy dissipation

photon-based technologies the energy budget is < fJ/bit

Energy harvesters – thermoelectric

Smart Home ???

Stays on the heater but powered by battery !!!!!

Electronics

Si -best material mass-production circuits

Why we always need another material for different application?

Monolitical integration not possible?

Photonics

Si dominates

Si has the highest optical losses (10 x InP)

Si- no light emitters (indirect bandgap)

InP – efficient laser but technology is not CMOS

Energy harvesters – thermoelectric

SiGe good **> 900°C 20°-100°C**: Bi2Te3, PbTe

Electronics

High mobility chanels Low contact resistance

Go down in group IV

strained Si SiGe Ge GeSn

Si-Photonics

Laser is missing

Direct bandgap semiconductor

Go down in group IV

Strained Ge GeSn

Si-group alloys

Energy harvesters – thermoelectric

Low thermal conductivity (strong phonon scattering) Good electrical conductance

Take all group IV elements: SiGeSn or CSiGeSn alloys

Si-Ge-Sn A Multifunctional Alloy

$$E_g = E_{Ge} x_{Ge} + E_{Sn} x_{Sn} - b_{GeSn} x_{Ge} x_{Sn}$$

$$E_g = E_{Ge} x_{Ge} + E_{Sn} x_{Sn} - b_{GeSn} x_{Ge} x_{Sn}$$

$$E_g = E_{Ge} x_{Ge} + E_{Sn} x_{Sn} - b_{GeSn} x_{Ge} x_{Sn}$$

Sn < 7 at.% Fundamental **indirect** Electrons in **L band** Sn > 7 at.% Fundamental **direct** Electrons in Γ **band**

 $E_g = E_{Ge}x_{Ge} + E_{Si}x_{Si} + E_{Sn}x_{Sn} - b_{GeSn}x_{Ge}x_{Sn} - b_{SiGe}x_{Ge}x_{Si} - b_{SiSn}x_{Si}x_{Sn}$ $= E_{GeSn}(x_{Ge}, x_{Sn}) + x_{Si}(E_{Si} - b_{SiGe}x_{Ge} - b_{SiSn}x_{Sn})$

Si content 2 at.% 4 at.% 6 at.% 8 at.% 10 at.%

 $E_g = E_{Ge}x_{Ge} + E_{Si}x_{Si} + E_{Sn}x_{Sn} - b_{GeSn}x_{Ge}x_{Sn} - b_{SiGe}x_{Ge}x_{Si} - b_{SiSn}x_{Si}x_{Sn}$ $= E_{GeSn}(x_{Ge}, x_{Sn}) + x_{Si}(E_{Si} - b_{SiGe}x_{Ge} - b_{SiSn}x_{Sn})$

tunability

Si-Ge-Sn group IV alloys

challenges:

low solid solubility of Sn (< 1 at.%)

Sn segregation

(β -Sn) during growth

S. Wirths et al., JSST 2(5), N99 (2013)

Si-Ge-Sn group IV alloys

Lattice Constants

Large lattice mismatch (~ 15%)

Surface roughening & epitaxial breakdown

Sn segregation (β-Sn) during growth

S. Wirths et al., JSST 2(5), N99 (2013)

GeSn – Timeline

Si-Ge-Sn group IV alloys

200 mm Cold-Wall Reduced Pressure Reactor (RPCVD)

- Showerhead technology
- Precursors: <u>Ge₂H₆, SnCl₄, Si₂H₆</u>

Si-Ge-Sn group IV alloys

$$\Delta_s \propto \frac{1}{\sqrt{R}} e^{-1/k_B T}$$

Growth rate of Ge on Si (100)

GeH₄ => **Ge**₂H₆ E_{act} ↓ → ↑ growth rate at low T

15 Pa => 5Pa $E_{act} \sim constant$, growth rate \downarrow a factor of 3

Radicals:

 $Ge_2H_6 + H_2 => 2GeH_3 + H_2 => 2GeH_4$

 $Ge_2H_6 + N_2 => 2GeH_3 + N_2$

 $E_{act} \downarrow$ and growth \uparrow at low T

Supply of hydride radicals to the surface is a key element

GeSn/Si(001) Growth Kinetics

Growth Temperature

Solid solubility limit can be exceeded for $T_{growth} \le 450$ °C

Si-Ge-Sn group IV alloys

Very high crystall quality

Si-Ge-Sn group IV alloys

GeSn 12at.%

Huge lattice strain!!!
Si-Ge-Sn group IV alloys

GeSn 12at.%

Si-Ge-Sn group IV alloys

Conductivity mass

(Si)GeSn Epitaxy

Very high crystalline quality

GeSn – Defect Formation

3 July 2021

How can we differentiate between FACTS and *alternative facts* (fake news)?

Using knowledge and Experimental physics

Fundamental Indirect Bandgap

L-valley filled up with electrons and phonon scattering helps populate the Γ -valley at 300 K

Condensation in L-valley and phonon scattering freeze

Decreasing PL for decreasing Temperature

Fundamental Indirect Bandgap

Condensation in L-valley and phonon scattering freeze

Decreasing PL for decreasing Temperature

Fundamental Direct Bandgap

Γ-valley is filled up <u>BUT</u> large L-valley DOS

Condensation in Γ -valley ; scattering to L-valley decrease

STRONG increase PL for decreasing Temperature

Fundamental Direct Bandgap

scattering to L-valley decrease

STRONG increase PL for decreasing Temperature

Indirect-to-Direct Transition

Indirect-to-Direct Transition

Direct gap determination

The PL emission takes place at the strong absorption edge

What comes "new" with GeSn

The physics of **JUST** direct semiconductors.

The physics at transition

No such experiments were possible before GeSn

No Si group laser demonstration (as bulk semiconductor)

Variable Stripe Length (VSL) Method

- Measure the light amplification within a direct bandgap material via VSL
- Gain is a measure of how well a medium amplifies photons by stimulated emission

Photon density:

$$N_p + \Delta N_p = N_p e^{g\Delta l}$$

Variable Stripe Length (VSL) Method

Above lasing threshold

- Exponential fit to determine gain g
- Fixed y₀ (0.00531) used for fitting

$$I_{ASE} \propto rac{I_{spont} \cdot l}{g} (e^{g \cdot l} - 1)$$

Variable Stripe Length (VSL) Method

First Optically Pumped GeSn Lasers (2015)

Optical Pumping

Waveguide structure....

First Optically Pumped GeSn Lasers (2015)

Power Dependence

- GeSn laser at 20 K
 - At 2.5µm
 - max temp 100K

Details on the physics, problems, solutionsmaybe other time

1. Linewidth colapse

Integrated PL Intensity (a.u.)

How to recognize the laser effect:

2. Exponential PL Intensity increase Clear treshold

PL saturation (gain saturation)

3. Optical modes are cavity characteristic

PL saturation (gain saturation)

Laser stops

Laser stops

GeSn Laser evolution:

Heterostructure history

Sn content (at.%)

Heterostructure history

- 2D confinement in GeSn active layer
- Larger gap SiGeSn barrier
- reduced density of states

GeSn/SiGeSn MQW band structure

Specific for "JUST DIRECT" semiconductors (strained Ge, GeSn, SiGeSn)

3 July 2021

Light emission

- emission in double heterostructures limited by presence of defects at active region
- screening of carriers from defects in MQW

3 July 2021

MQW Laser

MQW Laser – Threshold reduction

- screening of carriers from defects...
 - ... increases intensity
 - ... dramatically decreases (low temperature) threshold

3 July 2021

No improvement in high temperature operation

Laser threshold comparison

Deceased laser threshold due to:

- carrier confinement
- 2D density of states

Temperature limitations due to

- moderate directness
- band offsets

SiGeSn modeling

[2]: T. Wendav et al. APL **108**, 242104 (2016)

$$Si_{x}Ge_{y}Sn_{z}:$$

$$E_{\Gamma} = E_{\Gamma}^{Si}x + E_{\Gamma}^{Ge}y + E_{\Gamma}^{Sn}z - b^{SiGe}xy - b^{GeSn}yz - b^{SiSn}xz$$

not a constant, but composition dependent

GeSn MQW

Elemental distribution inside GeSn QW

Dataset is split into spatial subvolumes of 100 ions each: <u>solid line:</u> measured number of blocks with given concentrations <u>dashed line:</u> binomial (random) distribution
Elemental distribution in SiGeSn layers

Frequency Distribution Analysis

5 nm slice, 500k atoms

Non-homogeneous distribution in inter-QW regions <u>for Si</u>

Element	at.%
Ge	78.6
Sn	10.2
Si	10.5

Atom probe tomography - SiGeSn

together with Prof. O. Moutanabbir group at Polytechnique Montréal, Cana

ordering effect for distant Si neighbours

Atomic Order in Metastable Sn-rich SiGeSn Ternary Alloys Phys. Rev. B, April 2017

Challenges

Low Pumping Thresholds	\Rightarrow Low defect density, minimize optical losses
SiGeSn QW	\Rightarrow Band off-sets
Room Temperature Operation	\Rightarrow Increase Δ E > 100 meV
CW-operation	\Rightarrow Large Δ E and low defect density
Electrically pumped laser	

Carrier dynamics- Conduction band

ħω~26meV

Carrier dynamics- Conduction band

Carrier dynamics- Conduction band

Carrier dynamics - power effect

Compressive strained layers

Carrier dynamics - Valence band

- Pumping increases **→**
- → scattering increases →
- → losses increases (large threshold)
- → more pumping →
- → Laser quenching

Carrier dynamics - Valence band

Tensile strained GeSn

Net gain calculations :

D. Rainko et al., Scientific Reports 2019

- Due to splitting of HH- and LH-bands majority of injected holes in LH
- optical transition matrix element for zpolarized radiation for LH-Γ transition (zpolarized) is larger (30 %) than the matrix element for HH-Γ (x-polarized) transition.

At the same L to Γ energy difference \clubsuit

higher gain for lower Sn contents

Tensile strained GeSn

GeSn on Si_3N_4 by layer bonding

Nature Photonics, 16 march 2020

Multi-mode pulsed lasing

GeSn lasers -Benchmarking

250 nm $Ge_{0.946}Sn_{0.054}$ Eg = 465 meV $\Delta E_{L-\Gamma} \sim 70$ meV

 $FWHM = 60 \ \mu eV$

E_{LH}-E_{HH}= -20 meV

FWHM = 3 meV

GeSn lasers - Benchmarking

Laser Threshold

	20K	150K	270K	Puls laser	cw laser	
High Sn/comp. Strain /Bulk	100-200 kW/cm²	300-800 kW/cm²	3-4 MW/cm²	YES	NO	
Medium Sn/ MQW	30 - 40 kW/cm²	300 - 400 kW/cm²		YES	NO	
low Sn/	1 kW/cm ²	4 kW/cm ²		YES	YES	
Tensile biaxial strain	cw mono puls mult	cw mono-mode puls multi-mode				

Pulsed lasing in strained micro disks

5th July 2019 Seite

MMI (Multi - Mode Interferometer) GeSn Ge buffer HR spectrum SiGeSn/GeSn 10 MQW Laser Intensity (a.u.) GeSn Wavelength (µm) Waveguide coupling Ge 2.5 12.5% Sn GeSn Laser Intensity (a.u.) Sagnac loops (mirrors) 8% Sn SiGeSn 40 60 2 × 10/100 00 Waynama 120 000 140 000 0.55 0.50 Energy (eV) 0.45 GeSn GeSn/SiGeSn MQW Laser Integration 0.7 0.6 wavelength Energy (eV) 0.5 0.4 MQW Bulk GeSn laser Elemental distribution tuning GeSn buffer (optically pumped) Ge Wave-Wavelength (µm) guides LEDS Analyses 2.5 3.5 3 Processing \ ____ 20 K___ Sn content 16% 300 K Epitaxy 30 A/cm² 50 A/cm² 80A/cm² 120 A/cm² 180 A/cm² 220 A/cm² (-n-e) 180 8 00 p-i-n GeSn LED 150 Se. 125 8 10 (Splitter) IMM 2.0 2.5 3.0 3.5 4.0 2.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.5 0.6 Enerav (eV) 0.7 λ. (μm) 0.3 0.4 Energy (eV)

GeSn activity

Short Wave Infrared (SWIR) imaging

Applications: _Spectroscopy _Imaging

Enhanced night vision

>> Penetration depth in high scattering mediums

GeSn Mid infrared imaging

Department of Electrical Engineering, University of Arkansas

Dual band Mid infrared imaging

Prof. Giovanni Isella

Dual band Mid infrared imaging

"BORING" infrared imaging

ink

"BORING" infrared imaging

ink

0.4

0.2

0.1

-0.1

-0.2

-0.4

Imaging

lhc00 | ACSJCA | JCA112.5208/W Library-x64 | manuscript.3f (R5.1.i2:5007 | 2.1) 2021/01/11 08:51:00 | PROD-WS-118 | rg_3430082 | 7/01/2021 16:32:34 | 8 | JCA-DEFAULT

pubs.acs.org/journal/apchd5

Article

¹ CMOS-Compatible Bias-Tunable Dual-Band Detector Based on ² GeSn/Ge/Si Coupled Photodiodes

3 Enrico Talamas Simola,* Vivien Kiyek, Andrea Ballabio, Viktoria Schlykow, Jacopo Frigerio,

- 4 Carlo Zucchetti, Andrea De Iacovo, Lorenzo Colace, Yuji Yamamoto, Giovanni Capellini,
- s Detlev Grützmacher, Dan Buca,* and Giovanni Isella

ACCESS

Cite This: https://doi.org/10.1021/acsphotonics.1c00617

III Metrics & More

Article Recommendations

Read Online

s Supporting Information

6 **ABSTRACT:** Infrared (IR) multispectral detection is attracting 7 increasing interest with the rising demand for high spectral 8 sensitivity, room temperature operation, CMOS-compatible devices. 9 Here, we present a two-terminal dual-band detector, which provides 10 a bias-switchable spectral response in two distinct IR bands. The 11 device is obtained from a vertical GeSn/Ge/Si stack, forming a 12 double junction *n-i-p-i-n* structure, epitaxially grown on a Si wafer. 13 The photoresponse can be switched by inverting the bias polarity 14 between the near and the short-wave IR bands, with specific 15 detectivities of 1.9×10^{10} and 4.0×10^9 cm·(Hz)^{1/2}/W, respectively. 16 The possibility of detecting two spectral bands with the same pixel 17 opens up interesting applications in the field of IR imaging and 18 material recognition, as shown in a solvent detection test. The

19 continuous voltage tuning, combined with the nonlinear photoresponse of the detector, enables a novel approach to spectral analysis,
20 demonstrated by identifying the wavelength of a monochromatic beam.

21 KEYWORDS: GeSn, Geo-on-Si, dual-band photodetector, infrared imaging

Gas sensing

Gases absorption lines in GeSn emission range

Gas sensing

Optical detection in human breath

Gas detected in Mid-IR	Disease
Acetone (C ₃ H ₆ O)	Diabetis
Carbon Monoxide (CO)	Liver diseases, asthma, cholesterol
Pentane (C ₅ H ₁₂)	Schizofrenia, infarct miocardic
Ammonia (NH ₃)	kidney diseases
Nitric oxide (NO)	Lung Inflammation, Bronchitis
Benzene (C ₆ H ₆)	Lung cancer

Optical detector integrated in a Si chip connected to a smartphone

Si-based energy harverstors

Target: Wearable thermoelectric harvesters of human body heat for IoT /AI

Device

TEG for Seiko wristwatch: drive a

TEG for powering sensors

watch (1 μ W) and battery recharge	22.0 pt + t
pulse oximeter	62÷100 μW
powered wireless	0.8÷1.0 mW
electrocardiography (ECG) system	0.4 down to 0.1
in a shirt	mW
ECG/ EEG energy harvesting body	
sensor fabricated using 130 nm	60÷200 μW
CMOS technology	
cardiac pacemakers	70÷100 μW
Cardiac defibrillator	30–100 μW
	$30 \mu\text{W}$ to several
Neurological stimulator	mW
Drug pump	100 µW–2 mW
Glucose monitor	>10 µW

Typical Power

22.5 µW

$$ZT = \frac{S^2 \sigma}{\kappa} T, \ \kappa = \kappa_e + \kappa_L$$

Si-based energy harverstors for wearables

D.Spirito et al., ACS Appliend Energy Materials, in press

$$ZT = \frac{S^2 \sigma}{\kappa} T, \ \kappa = \kappa_e + \kappa_L$$

Si-based energy harverstors for wearables

IoT (((c))) harvesting N O Sensing

TEG for powering sensors

Si-based energy harverstors for wearables

SiGeSn TE performances (ZT=1; k=27000 $\mu W cm^{-1} K^{-1}$), maximum efficiency with Tc~Th; at 300K

Professor Jun Chen | Wearable tech: turning body heat in to electricity
