
In theory, there is no 
difference between theory 
and practice. In practice, 
there is. 
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temperature behaviour, which is well-known from Mullins
work.

Physically, we assume that there are two ingredients
determining the relaxation: the thermodynamical “force”
which drives the relaxation (here, the excess curvature)
and second, the kinetic factors which determine the rate
of the equilibration. At all temperatures, curvature eÆects
are relevant, but we assume that the kinetics change due
to the presence of facets (or, equivalently, to the low con-
centration of kinks). The transition takes place, as stated
above, when `0 º Lc. Here is the mathematical translation
of this idea.

4.1 High temperatures

Let ±q be the amplitude of a perturbation of wave
vector q of the island perimeter with respect to the
equilibrium shape. The curvature eÆect (Gibbs-Thomson)
opposes the increase of the deformation. The rate of de-
crease depends on the appropriate kinetic process which
limits transport of matter from high to low chemical po-
tential regions. Let neq be the equilibrium atom density
along a reference island edge with the equilibrium shape.
Then, at high temperature, a deformation of local curva-
ture K results in an excess chemical potential ¢µ ª ∞q2±q

as in equation (2.6). In turn, this creates an excess atom
density nexc = neq exp[¢µ/(kBT )] º neq[1+° q2±q], where
° = ∞/(kBT ). Then, edge atoms flow away from the defor-
mation, whose amplitude decreases at a rate proportional
to the divergence of the mass current:

±̇q º °
1
ø§
r2(nexc ° neq) º °

neq

ø§
q2° q2±q (4.5)

where ø§ is the typical timescale of the appropriate kinetic
process which is responsible of matter transport.

A more detailed justification of this expression can be
found in Bales and Zangwill [25] and Pimpinelli et al. [26].

Defining the equilibration time teq by writing ±̇q=1/L º
°±q=1/L/teq gives

teq º L4 ø§

neq°
º N2 ø§

neq°
· (4.6)

Mullins equation is recovered if one assumes that atom
edge diÆusion limits the kinetics, so that

1
ø§
º D. (4.7)

The atom equilibrium density can be obtained from the
detailed balance at the kinks: Dneq = ∫kink, where ∫kink =
∫0 exp [°3E/(kBT )] is the rate of atom emission from
kinks and Dneq is the atom flux to the kinks [27,28]. Thus,

neq = ∫0/D0 exp [°E/(kBT )]. (4.8)

Inserting (4.7) and (4.8) in equation (4.6) yields, in the
limit of high temperatures,

teq º
1

°∫0
N2 exp [3E/(kBT )]. (4.9)

This prediction reproduces the teq ª N2 scaling of the
continuum theory, and it is in very good agreement with
the simulation results obtained at high temperatures both
for the temperature dependence and for the size depen-
dence (Fig. 5). Indeed, at high temperature the equilibra-
tion time shows an activation energy of approximately 3E
(Figs. 6), and teq behaves ª N2 in this regime.

4.2 Low temperatures

The low temperature regime sets in, for a given crystal
size, when the equilibrium distance between kinks be-
comes of the order of the linear size of the crystal, and
straight step portions appear. The (thermal) kink den-
sity then becomes a relevant concept. When the crystal
is deformed from the equilibrium shape, the kink density
is increased where the facets are shrunk, and decreased
where they are streched. On removing the constraint, the
kink density tends to equilibrium and seeks spatial uni-
formity. If the equilibrium facet size is L º N1/2, and
a shape deformation of order ±` is introduced, the kink
density unbalance is approximately ±`/L2. Then, the per-
turbation relaxes as

˙(±`) º ° 1
ø§§

£ 1
√L2 ±` º ° 1

ø§§
1
N

±`. (4.10)

The relaxation proceeds by moving a whole row of atoms
from a short to a long facet; diÆusion is fast on facets, and
the process is limited by nucleation of the new row, that
is, by the rate of atom encounters Dn2

eq. Then,

1
ø§§

º Dn2
eq = ∫2

0/D0 exp[°4E/(kBT )]. (4.11)

Inserting (4.11) and (4.8) in equation (4.10) yields, at low
temperatures,

teq º
D0

∫0
2
N exp [4E/(kBT )]. (4.12)

Again, the activation energy predicted here is in good
agreement with the low temperature limit observed in the
simulations (Fig. 5). The scaling teq ª N is less clearly
seen in the simulations (Figs. 6). However, the simula-
tions show that the lower the temperature, the lower the
size exponent, and if N is not too small, teq ª N is consis-
tent with our results. When N is smaller than about 100,
teq seems to increase faster than linearly. At such small
sizes, facets are always very short, and it is likely that an
intermediate behaviour between mass transport and facet
nucleation rules the relaxation.

4.3 Discussion

The scaling argument we propose nicely reproduces the re-
sults of our simulations and leads to a reasonable physical
picture of the equilibration, consistent with the observed
morphologies and kinetics (presence of facets, rapid com-
pletion of atomic rows...).
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When crystals grow unstable

Cu (0,2,24) Cu (1,1,17)



J = − D∇c

Jdown < Jup

Jdown
Jup

Ehrlich-Schwoebel effect

Net current “up”: leads to curved steps and/or 3D islands (mounds)



2D to 3D: interlayer transport barriers 
(“Schwoebel”)



Fig. 3. Surface morphologies after growth of 1000 ML at two deposition rates, on substrates with di!erent slopes, for an ES barrier
E
!
"1 eV. One can see mounding on a #at substrate (mJ "0, !

"
"10ML/s) (a), initial step bunching followed by mounding for mJ "0.2

and !
"
"1ML/s (b), fully developed step bunching with the beginning of a meandering (BZ) instability for mJ "0.4 and !

"
"1ML/s

(c), and BZ instability without bunching for mJ "0.8 and !
"
"10 ML/s (d).

step meandering, step bunching, and mounding.
The analytical results estimations are assembled
in Fig. 2 together with the results of our kMC
simulations. Indeed, triangles mark parameter
values where simulations show mound formation,
circles denote the formation of step bunches,
and diamonds indicate the step meandering (BZ)
instability.

Figs. 3a}d show four examples of surface mor-
phologies after deposition of 1000 layers when
the ES barrier for precursors is E

!
"1 eV, at the

points shown as closed symbols in Fig. 2. When the
surface slope ranges from mJ "0! (Fig. 3a) to mJ "0.8
(Fig. 3d) (i.e. from #at to l " 5), the surface
morphology changes from a mound pattern on the
#at surface (Fig. 3a, !

"
"10 ML/s) to the step

M. Vladimirova et al. / Journal of Crystal Growth 220 (2000) 631}636 635

Mounds

Bunches Curved steps

“Meanders”



Step meandering: the case of 

copper

 Meandering of steps on Cu 
vicinals extensively studied 
by Ernst et al.

 Compact [110] and open 
[100] steps both unstable

 Variation of wavelength 
with deposition rate 
disagrees with B&Z

  Nano-pyramids?

Cu(100): for both compact ([110]) and open ([100]) steps meandering occurs!

 λCu ~Flux 
-0.16÷0.2

(T. Maroutian et al., PRB 64 (2001) 165401)

E_Cu(1 1 17) =  92meV

E_Cu(0 2 24) = 132meV

Real out of equilibrium surfaces

Cu vicinals — unstable growth: curved step + 3D pyramids



ing energy is Eai=0.2 eV. With these values, the simulations
produce morphologies indistinguishable from the experimen-
tal picture. On looking carefully, one notes that in the experi-
ments the pyramids tend to align along the step direction, a
feature missing in the simulations. Elastic interactions, or a
slightly varying average step density, both obviously absent
in the simulations, may explain the discrepancy.

Figure 4 exhibits the different computed morphologies for
various impurity concentrations, ranging between 0 and 0.05,
for both close-packed !top panel" and open !bottom panel"
steps.

In order to quantify the simulated morphologies, we com-
puted the surface roughness !root-mean-square width of the
surface profile" as a function of the concentration of depos-
ited impurities. This is presented on Fig. 5. The roughness
increases linearly for small concentrations, twice as fast for
close-packed steps as for open ones, then it saturates expo-
nentially for larger impurity densities.

As we have seen, impurities seem to hold the answer to
the riddle of the pyramids. Figure 6 shows that they may also
provide the solution to the riddle of the wavelength. Indeed,
in the top panel the morphology of the unstable surface at
different deposition rates, without impurities, may be seen.
In the leftmost bottom panel, the wavelength of the mean-
dering structure is plotted as a function of F. A power law of
the form !m#F−" is apparent, with " consistent with the BZ
value 1/2.

The rightmost panel shows the !m vs F plot for varying
concentrations of impurities. For strongly interacting impu-
rities, Eai=0.2 eV, the power " decreases steadily with the

800x800, L=15, T=250K, F=5e-3ML/s
Eb=0.1eV, Ed=0.4eV, Ea=0.15eV,
20 ML

360x360, L=5, T=280K, F=5e-3ML/s
Eb=0..07eV, Ed=0.4eV, Ea=0.12eV,
20 ML

Cu (0 2 24) Cu (1 1 17) Cu (1 1 17)

800x800, L=5, T=285K, F=5e-2ML/s,
Eb=0..07eV, Ed=0.4eV, Ea=0.12eV,
40 ML

FIG. 2. !Color online" !Top panel" Experimental STM pictures of the !0 2 24" and of the !1 1 17" Cu surfaces, undergoing unstable step
flow !step meandering". The rightmost picture shows the !1 1 17" surface at a larger scale. Small, square-based pyramids appear to cover the
unstable pattern. !Bottom panel" Simulated !0 0 24" and !1 1 17" surfaces. Parameters are chosen in such a way that the period of the
instability coincides with the experimental one in units of the average terrace width. The rightmost panel is a larger-scale view, showing that
pyramids are absent in the simulations of the pure system.

FIG. 3. !Color online" Experimental !left" and simulated !right"
micrograph of the !1 1 17" surface. Impurities are added during the
simulated deposit. Small, square-based pyramids now appear both
in the experiment and the model !see text for simulation
parameters".

0 % 2 % 5 %

0 % 0.5 % 1 %

FIG. 4. !Color online" Simulated unstable vicinal surfaces in the
presence of varying impurity concentrations. Top panel is for com-
pact steps; bottom panel for open steps.
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Inverse Schwoebel effect

Fig. 1. Surface morphologies after growth of 1000 ML on a vicinal surface: (a) mJ "0! .4 (l"10), !
!
"1 ML/s, E

"
"0; (b) mJ "0! .4

(l"10), !
!
"1ML/s, E

"
"0.1 eV; (c) mJ "0! .2 (l"20), !

!
"0.1 ML/s, E

"
"1 eV (c). The surface pro"le at three depositions times is

plotted in panel (d), for the same parameters as in (c).

the surface, and to regard at the other component
as the precursor. The III}V molecule would then be
the growth unit, produced by encounters of group-
III and -V atoms. Assume for de"niteness that the
group-V component is in excess. In this case, the
rate of BPA transformation, "

!
, is proportional to

the (uniform) density of group-V atoms, "
!
"D

!
c
#
,

where c
#

"!
#
#
#
, and !

#
and #

#
are the impinge-

ment #ux and the average lifetime before desorp-
tion of the group-V element, respectively. Note that
the concept of chemisorbed molecular precursors is
not foreigner to MBE. It has been, for instance,
invoked in the case of GaAs grown on GaAs(1 1 0)
[19].

M. Vladimirova et al. / Journal of Crystal Growth 220 (2000) 631}636 633

Jdown > Jup

Net current “down”

Leads to step bunching

R.L. Schwoebel, J. Appl. Phys. 40 (1968) 614. 



Common wisdom is:

• Surface current “up”: step meandering;


• Surface current “down”: step bunching



Common wisdom is:

• Surface current “up”: step meandering;


• Surface current “down”: step bunching

Common wisdom is wrong

ν⊥ = − ℓ2 dJ(ℓ)
dℓν∥ = ℓJ(ℓ)

(step bunching if < 0)(step meandering if < 0)



Another approach: two-particle 

modelsComplex growth: multiple components



ES barrier at step edges implies coexistence of 
mounding, bunching and meandering...
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Epitaxy on a crystal
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Low T, low and high growth rates
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Figure 2. Top panel: Particle shape obtained for growth with parameter values ߙ ൌ 2, 

଴ܰ ൌ 4 ൈ 10ସ, ݐ ൌ 5 ൈ 10଺. The core was initially the same as in Fig. 1. Bottom panel: Shape 

obtained for the same value of ߙ ൌ 2, but with ଴ܰ ൌ 2 ൈ 10ହ, ݐ ൌ 10଺. In both cases 

approximately 4.4 ൈ 10଺ atoms were deposited. 
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Low T, high T and intermixing
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Figure 2. Top panel: Particle shape obtained for growth with parameter values ߙ ൌ 2, 

଴ܰ ൌ 4 ൈ 10ସ, ݐ ൌ 5 ൈ 10଺. The core was initially the same as in Fig. 1. Bottom panel: Shape 

obtained for the same value of ߙ ൌ 2, but with ଴ܰ ൌ 2 ൈ 10ହ, ݐ ൌ 10଺. In both cases 

approximately 4.4 ൈ 10଺ atoms were deposited. 
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Figure 3. Top panel: Onset of clustering in growth at low temperatures, for ߙ ൌ 2.5, 

଴ܰ ൌ 2 ൈ 10ସ, ݐ ൌ 10଺. Here the core remains practically intact. The atoms originally in the core 

are color coded in green, whereas the added atoms are color coded in burgundy. The shell is 

primarily formed by the added atoms and its growth morphology is initially governed by the 

emergence of ziggurat-type clusters. For the selected process time the shell contains 

approximately 6% of atoms when compared to the number of atoms in the core. Bottom panel: 

Absence of any significant clustering at high temperatures. Here ߙ ൌ 1, with the same ଴ܰ ൌ 2 ൈ

10ସ, but the simulation time was taken as ݐ ൌ 5 ൈ 10଺. The growing surface remains rather 

smooth even for the large time selected, and it includes a significant admixture of atoms from the 

original core. For this process time the shell here contains about 25% atoms when compared to 

the initial count of atoms in the core. 

 



Very low T, high and low growth rate:  
Instability nucleated by pyramid growth
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Figure 4. Top panel: Development of clustering for the same particle as shown in the top 

panel of Fig. 3, but for large time. Here ߙ ൌ 2.5, ଴ܰ ൌ 2 ൈ 10ସ, ݐ ൌ 8 ൈ 10଺. Bottom panel: 

Smaller-scale clustering for the case of ߙ ൌ 2.5, ଴ܰ ൌ 6 ൈ 10ସ, ݐ ൌ 3 ൈ 10଺. 
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Figure 5. Illustration of the morphology of pyramid-shaped instabilities initiating the 

irregular cluster-mode growth in situations such as those presented in Fig. 4, and also in the top 

panel in Fig. 3 (for larger times than shown there). Top panel: Pyramidal clusters developing on 

growing (100) type FCC faces, with all the side faces of the type (111). Bottom panel: Pyramidal 

clusters developing on growing (111) type FCC faces, compared to a schematic depicting a 

pyramidal shape made of fragments of various (111) and (100) FCC faces. 
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Modeling of Growth Morphology of Core-Shell Nanoparticles 
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Abstract 

   

We model shell formation of core-shell noble metal nanoparticles. A recently developed kinetic 

Monte Carlo approach is utilized to reproduce growth morphologies realized in recent 

experiments on core-shell nanoparticle synthesis, which reported smooth epitaxially grown 

shells. Specifically, we identify growth regimes that yield such smooth shells, but also those that 

lead to the formation of shells made of small clusters. The developed modeling approach allows 

us to qualitatively study the effects of temperature and supply the shell-metal atoms on the 

resulting shell morphology, when grown on a pre-synthesized nanocrystal core. 
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Synthesis of Al nanocrystals
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Figure 7. (A) TEM images of reactions after three hours with different ratios of AlH3 to 

Tebbe’s reagent. 10:1 Inset: possibly an Al nanocube seed. (B) SEM of Al nanorods from 

an Al nanocube reaction with a 200:1 ratio of AlH3 to Tebbe’s reagent. Inset: 45° tilted 

SEM image of an individual Al nanorod with a pentagonal cross-section. (C) 45° tilted SEM 
of trigonal right bipyramidal Al nanocrystals produced alongside Al nanocubes. (D) 

Statistics of Al nanocrystal shapes from three separate Al nanocube reactions (472 

particles measured).  

 

The ratio of AlH3 to Tebbe’s reagent is critical to controlling the Al nanocube 

morphology as depicted in Figure 7. When there is too much Tebbe’s reagent in the 

reaction, irregular cubic Al nanocrystals with lumpy surfaces are produced (Figure 7A, 

10:1 ratio of AlH3:Tebbe). As the ratio of AlH3 to Tebbe’s reagent increases, Al nanocubes 

with concave high index facets are produced alongside the cubic Al nanoclusters with 

bumpy surfaces (Figure 7A, 50:1 ratio). Between a 100:1 and 200:1 ratio of AlH3 to 

Tebbe’s reagent, regular Al nanocubes terminated by {100} facets are the major product 

of the reaction (Figure 2 and Figure 7A). Further increasing the ratio of AlH3 to Tebbe’s 

reagent results in the truncation of the Al nanocubes, exposing {111} facets at the corners 

of the cubes (Figure 7A, 500:1 ratio). The formation of truncated Al nanocubes with low 

amounts of Tebbe’s reagent is attributed to the reduced concentration of the molecular 

species responsible for producing {100} faceted Al nanocubes.  
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product in the synthesis of branched Al nanowires, particularly if the reaction time was 

only five minutes. Many of the Al nanowires had multiple branches extending in an 

orthogonal manner from a central limp. The branched Al nanowires are single crystalline 

and surrounded by a native oxide shell as evident from bright field TEM and the associated 

<100> selected area electron diffraction pattern (Figure 4D-E). High-resolution TEM of 

the junction of a branched Al nanowire and its Fourier transform indicated the nanowires 

are elongated along the <100> directions (Figure 4E). This is the first report of anisotropic 

Al nanocrystal growth in the <100> direction, in our previous examples only <110> 

directed anisotropic growth was observed.53,65  

 

 
Figure 5. Influence of the ratio of TIBA to Tebbe’s reagent on the final Al nanocrystal 
morphology. Top row: Representative TEM images of reactions with 100:1, 140:1, 200:1 
and 300:1 ratios of TIBA to Tebbe produce isotropic Al nanocrystals, branched Al 
nanowires and Al nanowire bundles respectively. Bottom row: High magnification TEM 
images display the diversity of the morphology of these Al nanocrystals.  
 

Using fresh Tebbe’s reagent, the molar ratio of TIBA to Tebbe’s reagent was found 

to dramatically influence the morphology of the Al nanocrystals produced by this reaction 

(Figure 5). With a 100:1 molar ratio of TIBA to Tebbe isotropic Al nanocrystals with an 

average size of 20-30 nm were produced (Figure 5). As the molar ratio of TIBA to Tebbe 

increased to 140:1, long multiply branched Al nanowires with a typical diameter of 35 ± 3 



Chemistry: the role of precursors
Synthesis of Al nanocrystals 

 

55 

 
Figure 1. Synthesis of Al octopods by high-temperature decomposition of AlH3 with 
Tebbe’s reagent in diglyme. A. Reaction scheme for the synthesis of Al octopods. B. Tilted 
SEM image of an individual Al octopod. C. High-resolution TEM image of an Al octopod. 
D. Zoomed in image of the top corner of this octopod. E. <100> selected area electron 
diffraction pattern of the Al octopod in C and D. 

 

Since the supply of Al atoms is effectively controlled by the amount of Tebbe’s 

reagent and the reaction temperature, these parameters can be optimized for the growth of 

highly anisotropic Al nanocrystals. It is worth noting that precursor concentration would 

also influence this rate but was not explored owing to the sensitivity of reactions more 

dilute than ~25 mM of AlH3 on the Schlenk line. Recent kinetic Monte Carlo simulations 

of the diffusive growth of nanoparticles based on the relative flux of incoming atoms 

(which was controlled by concentration and temperature) and surface migration of adatoms 

have shown that increasing the incoming flux leads to the growth of highly anisotropic 

nanoparticles such as concave cubes.124 By increasing the incoming atom flux beyond a 

certain threshold, the growth of nanoparticles with bumpy surfaces was observed using 

kinetic Monte Carlo simulations of the diffusive nanoparticles growth.125 This family of 

nanoparticle morphologies are considered kinetic products because during crystal growth, 

an atom is deposited at the reactive sites (undercoordinated atoms at corners, edges and 

steps) before the previous adatom has time to diffuse on the surface to a thermodynamically 

favored position in the crystal lattice. As the nanocrystal grows, these atoms become 

kinetically trapped in thermodynamically unfavorable positions that manifest in Al 

nanocrystals with high-index surfaces and anisotropic shapes such as concave cubes.  



 

 

13 

Based on these observations, thermal decomposition of TIBA in an suitable solvent 

may be reliable method to produce Al nanocrystals. To investigate this hypothesis TIBA 

was pyrolyzed in hexadecane, dioctylether, trioctylamine, and trioctylphosphine. Scanning 

electron microscopy (SEM) images of the resulting particles are shown in Figure 2. 

Without a coordinating atom in the solvent as in the case with hexadecane, coral-like Al 

microstructures were produced. Introducing Lewis bases with O, N, or P coordinating 

atoms resulted in the production of large Al nanocrystals. In the cases with trioctylamine 

and dioctylether a small fraction of the nanocrystal geometries included single crystalline 

Al nanorods. To the best of our knowledge, this work demonstrates the first heat-up 

synthesis of colloidal Al nanocrystals and Al nanorods.82–84  

 

 
Figure 4. Colorized SEM images of the diversity of Al nanocrystals synthesized by high-
temperature pyrolysis of TIBA or DIBAH in trioctylamine. For scale, the edge of each 
image is ~3 microns. Interestingly, {111} facets appear smoother than {100} facets.  



Stacking 1 over 2: wetting & 
elasticity



Wetting



σfilm

σsubstrate

𝒜

𝒜

𝒜

𝒜

Solid wetting

σinterface
σsubstrate

σfilm



Δℱ = 𝒜(2σfilm − σsubstrate − σfilm + σinterface)

𝒜

𝒜

𝒜

𝒜

Solid wetting

σsubstrate

σfilm

σfilm

σsubstrate

σinterface



𝒜

𝒜

𝒜

𝒜

Solid wettingσfilm

σfilm

σsubstrate

σsubstrate

σinterface

Δℱ = 𝒜(2σfilm − σsubstrate − σfilm + σinterface)

= 𝒜(σfilm + σinterface − σsubstrate)



σfilm + σinterface − σsubstrate ≤ 0

σsubstrate ≥ σfilm + σinterface

2D growth



σfilm + σinterface − σsubstrate ≤ 0

σsubstrate ≥ σfilm + σinterface

2D growth

σfilm + σinterface − σsubstrate > 0

σsubstrate < σfilm + σinterface

3D growth



σfilm + σinterface − σ′￼first layer = ?

σ′￼first layer ≥ σfilm + σinterface

Reconsider 
2D growth

σfilm + σinterface − σ′￼first layer > 0

σ′￼first layer < σfilm + σinterface

2D+3D growth



Crystal-crystal interface misfit create strain: larger in the (thin) 
film than in the substrate
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in the growing layer, typically due to a mismatch in lattice constants between the substrate and the deposited 
layer. 
 
Comparison between the three thermodynamic growth modes: 

 

 
 
 
Surface Diffusion and Island Density: 

 
 
The deposition of adatoms onto a surface form a 2D gas of atoms. The super-saturation leads to condensation 
through nucleation to growth of 2D or 3D islands.  
 
 
An arriving adatom makes a random walk on terrace, it has two fates:  

• either meets another adatom forming a stable nucleus (nucleation) à forming new islands; 
• or meets an existing island and stick to it (growth).  

The competition between nucleation and growth is determined by adatom diffusion coefficient.  
For example, a large diffusion coefficient means a high probability for an adatom to find an existing island 
before another adatom is deposited in its vicinity to provide chance for nucleation, leading to an overall lower 
island density. Therefore, there is a relation between surface diffusion and island density. 
      

Epitaxial growth modes



Epitaxial growth and elasticity
Growing deformable layers over a deformable substrate



where we have used xiðEÞ ¼ ð1þ EÞxi. One can see that since the stress is proportional to Dx% a and
not to its square, the stress measures the strength of the individual forces and allows to differentiate the
pulling and pushing situation with the scalar product between the force fiþ1!i and the relative position
of the neighbour xiþ1 % xi. This is also evident in the expression of the stress that can be obtained at
finite temperature from the virial theorem [32]:

sij ¼ %NkT

V
dij %

1

2V

X

a

X

b

f abi rabj ; (66)

where

rabi ¼ rai % rbi (67)

is the i component of the distance between the atoms a and b and

f abi ¼ % @E

@rabi
(68)

is the i component of the force exerted by the atom b on the atom a.
To comprehend the significance of the surface stress with this simple toy model we will consider a

two-dimensional slab formed byM % 2 bulk like layers and 2 surface ones (see Fig. 10). For the sake of
simplicity let us consider that the atoms are connected by strings when they are first neighbours and
belong to the same layer and by rigid bars when they belong to neighbouring layers. For the bulk like
layers the spring constant and the equilibrium distance are k and a, and ks and as for the surface ones.
For an homogeneous deformation with first neighbours distance Dx, one can easily calculate the total
energy of the system:

Eslab ¼ 1
2N½ðM % 2ÞkðDx% aÞ2 þ 2ksðDx% asÞ2'; (69)

and the total stress per atom in the direction parallel to the surface

sslab ¼
1

MNDx
Eslab

E
¼ 1

MDx
½ðM % 2ÞkðDx% aÞ þ 2ksðDx% asÞ'; (70)

where N is the number of atoms in each layer.
To calculate the excess quantities one must calculate the total energy of a bulk system with the same

number of particles:

Evol ¼ 1
2NMkðDx% aÞ2; (71)

Fig. 10. Simple toy model representing a slab composed of M % 2 bulk like layers and two surface layers. The springs
connecting the surface and bulk layers have different force constants (respectively ks and k) and equilibrium distances
(respectively as and a).
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The harmonic crystal

In the inhomogeneous case, the ith component of the force per unit area exerted on the face with normal
direction k̂ is

sikð~rÞ þ
1

2

@sik
@xk

!

!

!

!

~r

dxk þ Oðdx2Þ: (2)

When the elementary parallelepiped is in mechanical equilibrium, that means when no resultant force
or torque displaces or rotates it, the bulk stress tensor fulfils the following conditions [4]:

X

j

@sij
@xj

þ f exti ¼ 0 and sij ¼ sji; in the bulk;

X

j

sijnj % f surfi ¼ 0 at the surface; (3)

where~f ext is the external force field per unit volume acting in the bulk (for example gravity),~f surf the
forces applied at the surface of the body and n̂ the unit vector normal to the surface of the body directed
towards the exterior. As can be seen from the relations (3), for an homogeneous body (without defects)
in mechanical equilibrium, an inhomogeneity of the stress field exists only as a consequence of the
existence of an external force field.

2.1.2. Bulk strain tensor
The symmetric bulk strain tensor components are defined by

Eij ¼
1

2

@ui
@xj

þ @uj
@xi

" #

; (4)

where ui are the components of the displacement field [4]. This somehow artificial symmetrisation of
the strain tensor avoids considering a simple rotation as a deformation.1 The diagonal components Eii
describe the elongation parallel to the i-axis, whereas the off diagonal element Eij with i 6¼ j is related to
the deformation angle measured between two straight lines initially parallel to the axis xi and xj,
respectively (see Fig. 2).

1x 1x

x2 x2

L L’

α

(a) (b)

Fig. 2. Deformation of a 2D square when the respective 2& 2 strain tensor has only (a) a non-zero diagonal component E11
or (b) non-zero off diagonal components E12 ¼ E21. In the first case the elemental length L becomes L0 ¼ Lð1þ E11Þ and the
surface area is not conserved. In the second case, after deformation the two principal directions x1

0 and x2
0 form an angle of

a ¼ p=2% 2E12 and the surface area is conserved.

1 In some cases, for the sake of mathematical simplicity one defines Eij ¼ @ui=@xj. This tensor is called the unsymmetrised
strain tensor.
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(see Eq. (60)) as is the case of many systems reported by Ibach [1]. In the case of adsorption of CO on
Pt(1 1 1) the slope at the origin effectively depends on the bonding energy change between A and B [1].

3. Atomistic description

3.1. Toy model

To understand how the stress can be calculated from atomistic potentials let’s begin with a very
simple model: a finite linear chain of N atoms coupled by perfect strings (Fig. 9(a)). The total energy of
the system reads:

EðfxigÞ ¼
k

2

X

i

ðxiþ1 % xi % aÞ2; (62)

where a is the equilibrium distance, k the spring constant, and N the number of particles. If all the
atoms are separated by the same distance Dx the energy becomes:

EðfxigÞ ¼ N 1
2 kðDx% aÞ2; (63)

and the total force on the atom i is zero:

fi ¼ % @E

@xi
¼ k½ðxiþ1 % xi % aÞ þ ðxi%1 % xi þ aÞ' ¼ kðDx% DxÞ ¼ 0: (64)

Which means that neither from the energy nor from the force one can distinguish between the case with
elongated strings Dx > a (Fig. 9(b)) to the case with compressed ones Dx < a (Fig. 9(c)). In the two
cases the total force is zero, but the direction of the forces exerted by the neighbouring atoms are
reverted. Each atom in the chain is pushed by its neighbours in one case and pulled in the other.
The stress of the system can be calculated as the derivative of the energy with respect to the

deformation

s ¼ 1

NDx
@E

@E

!

E¼0

¼ k

NDx

X

i

ðxiþ1 % xi % aÞðxiþ1 % xiÞ ¼ kðDx% aÞ; (65)

Fig. 9. (a) Simple one-dimensional model used to introduce the concept of stress with inter-atomic potentials. Schematic
representation of the inter-atomic forces between neighbouring atoms when the chain is (b) elongated and (c) compressed.
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∼
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xi+1 − xi → u ai → xi
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In the inhomogeneous case, the ith component of the force per unit area exerted on the face with normal
direction k̂ is

sikð~rÞ þ
1

2

@sik
@xk

!

!

!

!

~r

dxk þ Oðdx2Þ: (2)

When the elementary parallelepiped is in mechanical equilibrium, that means when no resultant force
or torque displaces or rotates it, the bulk stress tensor fulfils the following conditions [4]:

X

j

@sij
@xj

þ f exti ¼ 0 and sij ¼ sji; in the bulk;

X

j

sijnj % f surfi ¼ 0 at the surface; (3)

where~f ext is the external force field per unit volume acting in the bulk (for example gravity),~f surf the
forces applied at the surface of the body and n̂ the unit vector normal to the surface of the body directed
towards the exterior. As can be seen from the relations (3), for an homogeneous body (without defects)
in mechanical equilibrium, an inhomogeneity of the stress field exists only as a consequence of the
existence of an external force field.

2.1.2. Bulk strain tensor
The symmetric bulk strain tensor components are defined by

Eij ¼
1

2

@ui
@xj

þ @uj
@xi

" #

; (4)

where ui are the components of the displacement field [4]. This somehow artificial symmetrisation of
the strain tensor avoids considering a simple rotation as a deformation.1 The diagonal components Eii
describe the elongation parallel to the i-axis, whereas the off diagonal element Eij with i 6¼ j is related to
the deformation angle measured between two straight lines initially parallel to the axis xi and xj,
respectively (see Fig. 2).
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1 In some cases, for the sake of mathematical simplicity one defines Eij ¼ @ui=@xj. This tensor is called the unsymmetrised
strain tensor.
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kinetics description of elastic driven instability that means more precisely spontaneous domain
formation (Section 7), morphological instability of surfaces under stress (Section 8), step bunching
instabilities (Section 9) and elasticity effects on some well-known surface phase transition (Section 10).
At last, Part III (Section 11) gives as a conclusion some beautiful examples of nanostructured surfaces
obtained by the so-called bottom-up approach by using elasticity as a tool.

2. Basic concepts: surface stress of flat surfaces

2.1. Elastic description of bulk phases

Here we will briefly recall some useful fundamental concepts or definitions used to describe
elastic properties of bulk phases. In particular we will recall the definitions of stress, strain and elastic
energy.

2.1.1. Bulk stress tensor
Let us first consider the case of an homogeneous stressed solid and an elementary parallelepiped of

volume dV ¼ dx1 dx2 dx3 centred on a point~r. The face normal to the k̂ direction has an area dxi dxj
(1 " i 6¼ j 6¼ k " 3) and is submitted to a force per unit area equal to r # k̂, i.e., the ith component of the
force is the element sik of the bulk stress tensor r (see Fig. 1). The three diagonal components sii
describe normal stresses whereas the off-diagonal ones sij (i 6¼ j) define shearing stresses.
Mathematically speaking r is a third-order tensor of rank 2 and the components sij transform under
axis rotations as smn0 ¼

P

ik amisikank, where aij are the components of the matrix of axis
transformation. The trace of the tensor is invariant under rotations. In a liquid the stress tensor is
diagonal $Pdij, so the mean value equals minus the hydrostatic pressure:

P ¼ $ 1

3

X

i

sii: (1)

Fig. 1. Action of the components sij of the bulk stress tensor applied on the three front faces of an elementary cube. A face
normal to the direction k̂ bears a triplet r # k̂ ¼ sik; i ¼ 1; 2; 3. The first index gives the direction î of the force and the second
one k̂ gives the direction of the normal to the surface where the force acts. On the back faces of the cube there are identical
stresses of opposite sign in the homogeneous case or slightly different ones for the inhomogeneous one (see text).
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2.1.3. Hooke’s law
In the framework of linear elasticity, the relation between bulk stress and strain tensor can be written

as

sij ¼
X

kl

CijklEkl; Eij ¼
X

kl

Sijklskl; (5)

where Cijkl and Sijkl are called stiffness and compliance coefficients, respectively. These coefficients
describe the elastic properties of the material. Since stiffness C and compliances S are fourth rank
tensors, they contain in three dimension, 81 components which transform under an axis transformation
as

C0
mnop ¼

X

ijkl

amianjCijklaokapl; (6)

where aij are the components of the matrix of axis transformation. In fact owing to stress and strain
tensor symmetries (intrinsic) and energy invariance as well, the C and S tensors contain only 21
independent components. Furthermore crystalline symmetries (extrinsic) reduce, for example, the
number of independent components from 21 for triclinic crystals to 3 for cubic crystals. It is interesting
to point out that from an elastic point of view cubic crystals are not isotropic and that real isotropic
materials (such as glass) are simply described by two elastic constants. For more details on symmetry
effects on tensors see Ref. [5].

2.1.4. Bulk elastic energy
Let us consider a volume V of a solid, limited by a surface S with unit normal~n directed towards the

exterior (see Fig. 3).
Such a volume is submitted to two forces fields. The first one comes from the fact that the remaining

solid (in white in Fig. 3) exerts forces on the surface boundary. Let’s call them~f surf . The second force
field~f ext originates from some external field (for instance gravity) which acts on the volume V . Let us
now consider the virtual work done by both forces against an infinitesimal displacement field d~u:

dW ¼
I

S

X

i

f surfi dui dSþ
Z

V

X

i

f exti dui dV : (7)

Fig. 3. The dashed region represent a finite volume V taken from an infinite solid. The region is limited by a surface S
characterised by an unit vector ~n directed towards the exterior.
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where cp ({e(r)}) is an abbreviation for cp (exx(r), exy(r), exz(r)9 eyy(r)...) and
the es are functions of the us through (16.4). The free energy density cp
is determined by the fact that, for an infinite crystal at equilibrium, the
displacement field u should minimize # > . Therefore,

Scp ({e(r)}) dff t(r)
dua(r) dV

Identifying this relation with (16.6a) yields, after a few pieces of varia-
tional calculus,

£"% (16.19)

Since e is a symmetric matrix according to (16.4), fi may be chosen so
as to satisfy the symmetry relations

fig = fig = fig . (16.20)
In the case of the isotropic solid, the quantity (16.19) should be invariant

under rotation of the axes. The most general quadratic function which
satisfies this condition is

ay

Comparison with (16.19) and use of the symmetry relations (16.20)
yields (16.9).

Relations (16.19) and (16.21) hold for a homogeneous medium. What
can be done for a heterogeneous medium (as e.g. in Fig. 16.3)?

The problem with equation (16.21) is that it holds only if the displace-
ments and strains are counted from the unconstrained state, as noted at
the end of section 16.1. This is generally not the best choice! For instance,
in the case of Fig. 16.3, it is appropriate to use the same reference state
for both solids. In such a reference state, one solid at least is generally
constrained, and its strain with respect to the unconstrained state has a
non-vanishing value e®. If e^ is the strain counted from the common
reference state, e^ has to be replaced by e^ + e^ in equations (16.19)
and (16.21), which now read

9 (to) = \ E «5 (*•* + O (e« + 4i) (16-22a)

and

9 (to) = i ( y % ) • (16.22b)
ay
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where the volume variation 5 V is caused by the pression P. Values of the
bulk modulus for selected elements are displayed in Fig. 16.4. It should
be emphasized again that the applicability of the above equations is very
restricted. The set of two solid layers of Fig. 16.3 is under hydrostatic
pressure but equations (16.17) do not apply because the system is hetero-
geneous. This problem will be addressed in section 16.6, in the case where
one of the solids is infinitely thick.

16.5 Free energy
Let us again look at the system of Fig. 16.3. Assuming dFext/dS to be
known, one can write the equations (16.10) in each of the solids. But how
can dFext/dS be determined?

To solve a problem with two solids glued together, the general method
consists of minimizing an appropriate 'thermodynamic potential' or 'gen-
eralized free energy'. If the external force is due to a hydrostatic pressure,
the quantity to be minimized is the Gibbs free energy <D. In vanishing pres-
sure, <D reduces to the Helmholtz free energy <F = O — P V. At constant
volume, the quantity to be minimized is J^, but the volume is practically
never held fixed in surface physics. However, 3F is a nicer quantity to deal
with, because it does not depend on external forces.

The generalized free energy contains a volume contribution 3Fy and
a surface contribution SF$. The former can be written, in an external
potential, as

= j <P (Hr)}) d3r - JJ2 ^ f ^ M r ) d 3 r (16.18)
lu
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Fig. 16.4. The bulk modulus for selected elements. Units are kilobars (1600
kbar=l eV/A2.)
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In the inhomogeneous case, the ith component of the force per unit area exerted on the face with normal
direction k̂ is

sikð~rÞ þ
1

2

@sik
@xk

!

!

!

!

~r

dxk þ Oðdx2Þ: (2)

When the elementary parallelepiped is in mechanical equilibrium, that means when no resultant force
or torque displaces or rotates it, the bulk stress tensor fulfils the following conditions [4]:

X

j

@sij
@xj

þ f exti ¼ 0 and sij ¼ sji; in the bulk;

X

j

sijnj % f surfi ¼ 0 at the surface; (3)

where~f ext is the external force field per unit volume acting in the bulk (for example gravity),~f surf the
forces applied at the surface of the body and n̂ the unit vector normal to the surface of the body directed
towards the exterior. As can be seen from the relations (3), for an homogeneous body (without defects)
in mechanical equilibrium, an inhomogeneity of the stress field exists only as a consequence of the
existence of an external force field.

2.1.2. Bulk strain tensor
The symmetric bulk strain tensor components are defined by

Eij ¼
1

2

@ui
@xj

þ @uj
@xi

" #

; (4)

where ui are the components of the displacement field [4]. This somehow artificial symmetrisation of
the strain tensor avoids considering a simple rotation as a deformation.1 The diagonal components Eii
describe the elongation parallel to the i-axis, whereas the off diagonal element Eij with i 6¼ j is related to
the deformation angle measured between two straight lines initially parallel to the axis xi and xj,
respectively (see Fig. 2).
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x2 x2
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α

(a) (b)

Fig. 2. Deformation of a 2D square when the respective 2& 2 strain tensor has only (a) a non-zero diagonal component E11
or (b) non-zero off diagonal components E12 ¼ E21. In the first case the elemental length L becomes L0 ¼ Lð1þ E11Þ and the
surface area is not conserved. In the second case, after deformation the two principal directions x1

0 and x2
0 form an angle of

a ¼ p=2% 2E12 and the surface area is conserved.

1 In some cases, for the sake of mathematical simplicity one defines Eij ¼ @ui=@xj. This tensor is called the unsymmetrised
strain tensor.
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In the inhomogeneous case, the ith component of the force per unit area exerted on the face with normal
direction k̂ is
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When the elementary parallelepiped is in mechanical equilibrium, that means when no resultant force
or torque displaces or rotates it, the bulk stress tensor fulfils the following conditions [4]:
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where~f ext is the external force field per unit volume acting in the bulk (for example gravity),~f surf the
forces applied at the surface of the body and n̂ the unit vector normal to the surface of the body directed
towards the exterior. As can be seen from the relations (3), for an homogeneous body (without defects)
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existence of an external force field.
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where ui are the components of the displacement field [4]. This somehow artificial symmetrisation of
the strain tensor avoids considering a simple rotation as a deformation.1 The diagonal components Eii
describe the elongation parallel to the i-axis, whereas the off diagonal element Eij with i 6¼ j is related to
the deformation angle measured between two straight lines initially parallel to the axis xi and xj,
respectively (see Fig. 2).
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surface area is not conserved. In the second case, after deformation the two principal directions x1
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a ¼ p=2% 2E12 and the surface area is conserved.

1 In some cases, for the sake of mathematical simplicity one defines Eij ¼ @ui=@xj. This tensor is called the unsymmetrised
strain tensor.
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kinetics description of elastic driven instability that means more precisely spontaneous domain
formation (Section 7), morphological instability of surfaces under stress (Section 8), step bunching
instabilities (Section 9) and elasticity effects on some well-known surface phase transition (Section 10).
At last, Part III (Section 11) gives as a conclusion some beautiful examples of nanostructured surfaces
obtained by the so-called bottom-up approach by using elasticity as a tool.

2. Basic concepts: surface stress of flat surfaces

2.1. Elastic description of bulk phases

Here we will briefly recall some useful fundamental concepts or definitions used to describe
elastic properties of bulk phases. In particular we will recall the definitions of stress, strain and elastic
energy.

2.1.1. Bulk stress tensor
Let us first consider the case of an homogeneous stressed solid and an elementary parallelepiped of

volume dV ¼ dx1 dx2 dx3 centred on a point~r. The face normal to the k̂ direction has an area dxi dxj
(1 " i 6¼ j 6¼ k " 3) and is submitted to a force per unit area equal to r # k̂, i.e., the ith component of the
force is the element sik of the bulk stress tensor r (see Fig. 1). The three diagonal components sii
describe normal stresses whereas the off-diagonal ones sij (i 6¼ j) define shearing stresses.
Mathematically speaking r is a third-order tensor of rank 2 and the components sij transform under
axis rotations as smn0 ¼

P

ik amisikank, where aij are the components of the matrix of axis
transformation. The trace of the tensor is invariant under rotations. In a liquid the stress tensor is
diagonal $Pdij, so the mean value equals minus the hydrostatic pressure:

P ¼ $ 1

3

X

i

sii: (1)

Fig. 1. Action of the components sij of the bulk stress tensor applied on the three front faces of an elementary cube. A face
normal to the direction k̂ bears a triplet r # k̂ ¼ sik; i ¼ 1; 2; 3. The first index gives the direction î of the force and the second
one k̂ gives the direction of the normal to the surface where the force acts. On the back faces of the cube there are identical
stresses of opposite sign in the homogeneous case or slightly different ones for the inhomogeneous one (see text).
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The Shuttleworth Equation

• Solids are not Liquids 
• What is surface tension? 
• Why we should never speak of surface tension for solids



Applying a tensile stress on a liquid
ℱs = γ0A

δℱs = δ(γ0A) = γ0δA



Applying a tensile stress on a solid
ℱs = γA

δℱs = δ(γA)

=
∂γ

∂ϵxx
δϵxxA0 + γδA

= [ ∂γ
∂ϵxx

+ γ] A0δϵxx

where δA = A0δϵxx



The Shuttleworth Equation: surface stress

→ sxx = γ +
∂γ

∂ϵxx

δℱs = sxx δA Work of the surface stress

Elasticity in a discrete lattice 333

neighbours should minimize the energy, which is 3AT \V(r) + V(ry/3) .
Therefore, V\r) + V'(rj3)j3 = 0. But V\r) is the force between two
atoms at a distance r. Therefore, each atom is subject to a force f\ exerted
by each nearest neighbour, and a force f2= fi/y/3 exerted by each second
neighbour. The force f\ is repulsive ('hard core') while f2 is attractive (Van
der Waals force).

Now, if there is a planar surface (Fig. M.I), and if the change in the
local atomic distance is neglected, each surface atom is seen to be subject
to a force directed toward the outer side, normal to the surface and equal
to fiy/3 — If2 = —f2. Therefore, the surface atoms move out until the
force acting on them vanishes (of course, at equilibrium, the force acting
on each atom vanishes). This is the surface relaxation, and its result is that
the atomic distance (normal to the surface) is larger at the surface than
in the bulk. The experimental observation in transition metals is just the
opposite! Indeed the pair interaction model is not appropriate to metals.
Another simple approximation, the tight binding approximation, predicts
the correct sign of the relaxation (Desjonqueres & Spanjaard 1993).

While the force acting on each atom vanishes at equilibrium, two parts
of a solid can exert upon each other a non-vanishing force. This fact
has been used in chapter 16 where we defined the strain. An example,
in the case of an infinite planar surface perpendicular to the z direction,
is the force acting on the two parts of the outer atomic layer on both
sides of the plane x = 0 (Fig. M.2). If the relaxation is neglected, the
tangential component of this force is easily seen to be f3/i — fiy[3\ /2,
which is equal to f\. There is also a normal component, but it vanishes
after relaxation. The force acting on all half-atomic layers is easily seen
to vanish, as it should.

The existence of a non-vanishing force acting on a part of a system
at equilibrium is a paradox which disappears in a finite system. It also

-o o—-

o o
Fig. M.2. Surface stress. The vectors correspond to the forces acting on the two
outer atomic half-layers. The force acting on all other horizontal half-layers is
equal to zero.

Atomistic picture of the surface stress
3
2

f1 −
3

2
f2 = f1



In a liquid, the surface energy does not depend on the strain

sxx = γ0

δℱs = sxx δA = γ0δA

In a liquid, the surface free energy can be called “surface tension”



Elastic instabilities: Grinfeld
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relations (16.26) cannot be minimized with respect to the elastic displace-
ment, but can be minimized with respect to the shape, i.e. with respect to
plastic deformations. An example will be given in the next section. It turns
out that formulae (16.26) are often much more convenient than (16.18).
Examples will be given in the following section, in the appendices, and in
the problems.

The methods presented in sections 16.5 and 16.6 might be used to
determine the state of the bilayer of Fig. 16.3. One might postulate a
given strain us at the interface, deduce the effective external force acting
on the surface of both bodies, solve equations (16.10) in both solids,
calculate the total free energy by (16.26) and minimize it with respect to
us. We shall rather treat a simpler case, when one of the solids is infinite
in the direction perpendicular to the surface. Its average strain is then
zero if the external pressure is zero, and given by (16.17c) if there is a
non-vanishing pressure.

16.7 Solid adsorbate in epitaxy with a semi-infinite crystal
Figs. 15.2, 15.7 and 16.5 give examples of this important special case. The
adsorbate is forced to assume the lattice parameter a of the substrate,
while it would like to have the interatomic distance a — da. Such an
adsorbate is called 'coherent' or 'commensurate' or simply 'epitaxial' or
'in epitaxy'.

The z axis will be chosen perpendicular to the interface. The sample is
assumed to be confined in the volume defined by —L/2 < x < L/2 and
—L/2 < y < L/2, where the limit L = oo will be taken. The substrate
thickness is also assumed to be infinite.

If the surface of the adsorbate is flat, the strain is uniformly 0 in
the substrate because an adsorbate of finite thickness cannot deform a
substrate of infinite thickness. In the adsorbate, the strain (counted from
the free adsorbate) is exx = eyy = eo = da/a in the directions parallel to

(b)

0 Solid adsorbate

Solid substrate

Fig. 16.5. A crystal subject to a uniaxial stress produced mechanically (a) or by
an adsorbate (b).
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the free adsorbate) is exx = eyy = eo = da/a in the directions parallel to

(b)

0 Solid adsorbate

Solid substrate

Fig. 16.5. A crystal subject to a uniaxial stress produced mechanically (a) or by
an adsorbate (b).
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precisely, thicker than the wavelength of all the Fourier components of the
modulation function 5Z(x, y). Then, one should use the elastic constants
of the adsorbate in the response functions. This is true for instance if there
is a single Fourier component

5Z(x) = hcos(qx), (16.30)

and if the thickness of the adsorbate is larger than l/q. This case will be
addressed in the next section.

In the present section, continuum elasticity theory has been assumed to
hold. In reality, h cannot be smaller than a single atomic distance. It is
clear that continuum elasticity theory is not reliable in the vicinity of a
step, and this can be confirmed with the help of integral equations (Hu
1979). Thus, an additional requirement for the validity of (16.29b) is that
there are not too many steps. In the language of continuum elasticity,
this means that the slope of the surface is small everywhere, or that only
Fourier components of small wavevector q are present. Note that the strain
produced by a sinusoidal external stress of wavevector q is proportional
to q, as seen in appendix N. The quadratic terms in (16.27b) are therefore
proportional to q2 and negligible for small q.

To summarize this section, we have shown that, when an adsorbate
is coherent with the substrate and its surface is not planar, it is subject
to forces. The response to these forces can be approximately calculated
analytically in certain simple cases. On the other hand, these forces tend
to displace the atoms. Will this displacement smoothen the surface or
increase the modulation and therefore make the planar surface unstable?
The second possibility is the correct one as it will now be seen.

16.8 The Grinfeld instability

The last term of (16.27b) represents the effect of an external, anisotropic
stress (or force dipole density). In the present section, we wish to investigate
the consequences of such a stress on a dislocation-free solid. The stress
can be produced by a substrate (Fig. 16.5) (as in the preceding section)
or mechanically (Thiel et al. 1992). In contrast with the preceding section,
it will be assumed that only the xx stress component is different from 0
and equal to po- Since we shall not go beyond linear response theory, the
effect of a yy component, if present, can just be added.

If the external stress po is produced by a substrate, then it is given,
according to (16.29b), by

E E da

To understand the effect of a uniaxial external stress on a solid, it is
of interest to consider first the case of a liquid: if one squeezes a liquid

Misfit-induced strain:
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slab between two plates, the liquid flows and the slab becomes narrower.
The solid tries to do the same, i.e. atoms move and the device is unstable.
However, since atomic motion in a solid is very difficult, a lot of things
occur before the solid actually becomes narrower. In the dislocation-free
solid, the easiest atomic motion is surface diffusion. One can guess that
surface diffusion will lead to the formation of bubbles analogous to those
of Fig. 5.1, because the stress is at least partially released at the top of
the bubbles. Note that bubble formation in Stranski-Krastanov growth is
generally a result of interface free energies balance (wetting), while the
effect of interest here is elastic.

Considering bubbles would be too complicated, and we shall just make
a linear analysis of the stability of the planar surface, as was done in
chapter 10 in a different context (moving surface, and no elastic effects).

We are thus led to investigate the linear stability of the planar surface
with respect to the perturbation (16.30). That is, we want to see whether the
free energy variation due to (16.30) is positive or negative. The substrate
thickness will be assumed infinite, so that the average atomic distance
normal to z is fixed within complete layers. However, if some atomic
layers are not complete, they can expand or shrink. The atomic layers of
the adsorbate are happy to do so, since their lattice parameter thus gets
closer to its natural value. Therefore we can expect them to split through
a modulation of the surface (Fig. 16.5). This is the Grinfeld instability
(Asaro & Tiller 1972, Grinfeld 1986, 1993).

Simplified argument

A simplified calculation will first be presented, introducing an average
strain d e (with respect to the flat surface h — 0) instead of the complete
strain field. The free energy per unit area contains three contributions.

i) The capillary energy (due to chemical bonds which are broken when
forming the surface) is given in section 2.1 for a non-singular surface.
For the sake of simplicity, the surface stiffness a will be assumed
isotropic and thus equal to the surface tension a. It follows from equa-
tion (2.4) that the average capillary energy per unit area is increased
by the modulation by a quantity

dJ^cap/dj/ = ah2q2/2 .

ii) The energy gained due to the relaxation in the undulating region is
proportional to the height h of this region, to the average strain e, and
to the external stress po •

-hpO€ .

Capillarity (surface free energy)
curvature ∼ ∂2z/∂x2 → zqq2 ∼ hq2
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the situation of interest is when the surface is not a plane. The case of a
weakly undulating surface will now be investigated.

It will be assumed, and checked self-consistently at the end of the
calculation, that the integral in the first two (quadratic) terms of (16.27b)
can be replaced by an integral on z < Z, where z < Z is the average
height of the surface. Thus, the quadratic part of the free energy is that
of a harmonic solid limited by a plane.

The last (linear) term of (16.27b) may be interpreted as resulting from
a uniform density

dm^ = dmIl = _Eeo
dv dv 1 — £

of external forces moment inside the adsorbate. Assuming exx(x,y,z) and
eyy(x9y,z) to be continuous, the linear part of the free energy can be
rewritten as

— ^ - / _ d3r [exx(x, y, z) + eyy(x, y, z)\
l — C Jo<z<z

where SZ(x,y) = Z(x,y) — Z. The first term of the above expression can
be integrated once (exx can be integrated over x, and eyy over y) and gives
rise to an integral on the edge of the crystal. This integral is proportional
to L and negligible for large L (and for an infinitely thick substrate) with
respect to the second term, proportional to L2, namely

a = j ~ f dxdy [exx(x, y, 0) + eyy(x, y, 0)] 5Z(x, y). (16.29a)

Thus the free energy is that of a harmonic solid limited by the plane
z = Z and subject to a density of force dipoles per unit area acting in this
plane and equal to

* * * & * ! * * ! . (16.29b)
dS dS dS 1 — C a

The strain resulting from these forces can be calculated, and this is done
in appendices N and O. It is of the same order as bZ. When this response
is inserted into (16.27b), the quadratic terms are seen to be of higher order
and therefore negligible, consistently with the initial assumption.

In the above argument, we have assumed the elastic constants to be the
same in the substrate and the adsorbate. Of course, it is generally not so.
In formulae (16.27b) to (16.29b), the elastic constants E and £ are those
of the adsorbate. In the response functions, the substrate plays a part too,
and if the adsorbate is thin, they contain only the elastic constants E and
£ of the substrate. The simplest case is when the adsorbate is thick-more
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precisely, thicker than the wavelength of all the Fourier components of the
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is coherent with the substrate and its surface is not planar, it is subject
to forces. The response to these forces can be approximately calculated
analytically in certain simple cases. On the other hand, these forces tend
to displace the atoms. Will this displacement smoothen the surface or
increase the modulation and therefore make the planar surface unstable?
The second possibility is the correct one as it will now be seen.

16.8 The Grinfeld instability

The last term of (16.27b) represents the effect of an external, anisotropic
stress (or force dipole density). In the present section, we wish to investigate
the consequences of such a stress on a dislocation-free solid. The stress
can be produced by a substrate (Fig. 16.5) (as in the preceding section)
or mechanically (Thiel et al. 1992). In contrast with the preceding section,
it will be assumed that only the xx stress component is different from 0
and equal to po- Since we shall not go beyond linear response theory, the
effect of a yy component, if present, can just be added.

If the external stress po is produced by a substrate, then it is given,
according to (16.29b), by

E E da

To understand the effect of a uniaxial external stress on a solid, it is
of interest to consider first the case of a liquid: if one squeezes a liquid

Relaxation, proportional to elastic 
energy and  to volume change 
dV = hd𝒜
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iii) This energy gain is partially compensated by the elastic energy paid
to the inhomogeneity of the strain. This energy is mainly concen-
trated below the undulating region. Its three-dimensional density is
proportional to e2 through an elastic constant C. In order to obtain
the energy per unit area in the xy plane, one should multiply by the
depth of the strained region. This depth is of order \/q. This is seen
in appendix N, but the reason is essentially that the solution of the
linear, partial derivative equation (16.6b) in a semi-infinite medium
has the form uo exp(iqx + qz), because this form allows compensation
of d2/dx2 = — q2 by d2/dz2 = q2. The elastic energy per unit area is
then

Ce2/(2q).

Minimizing the sum of contributions (ii) and (iii) with respect to e yields

e « hqpo/C

so that the variation of the total free energy per unit area resulting from
the modulation is the sum of the three contributions (i), (ii) and (iii),
namely

= oh2q2/2 - h2p% q/(2C).

If q is small enough, the positive term due to surface tension is unable to
compensate the negative term, so that increasing the modulation amplitude
h lowers the free energy. There is an instability.

Detailed calculation

From the above argument, the surface tension has been seen to be negligi-
ble at long wavelengths. Thus, it will first be neglected in the forthcoming
detailed calculation.

As seen in the preceding section, the adsorbed layer with its modulation
is equivalent to a surface density of force dipoles given by (16.29b) and
(16.30), namely

- ^ p = hpodaxd«y cos(qx), (16.31)

The interaction energy might be deduced from (15.3) or (15.4), but it
is simpler to calculate directly the elastic response to the sinusoidal field
(16.31), since this calculation is an intermediate step in the derivation of
(15.3) or (15.4) in appendix N. Formula (N.17) yields the variation of the
free energy due to the surface modulation (16.31) as

l ^ 2 \q\ . (16.32)

Elastic energy cost proportional to  
penetration length of the strain λ ≈ 1/q

1)

2)

3)

dV = hd𝒜



Minimizing 2 and 3 with respect to      yields:

The total free energy in the undulating film is the sum of 1), 2) and 3):


ϵ
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Kinetics 2D to 3D: misfit-induced, layer-dependent 
interlayer transport barriers (“effective Schwoebel”)
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Fig. 1 – (a) Schematic of the molecule 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA).
(b) Simulation of the specular rod of a thin PTCDA film on Ag(111). At the anti-Bragg point
of the PTCDA film (q∗z = π/dF), the scattering of subsequent layers interferes destructively (see
inset). For layer-by-layer growth, the intensity at the anti-Bragg point oscillates as a function of the
deposition time.

Fig. 2 – (a) Time-dependence of the scattered X-ray intensity during growth at various temperatures
at low growth rate (0.8–2 Å/min) for T = 233K (red), T = 283K (green), T = 303K (blue),
and T = 358K (black). (b) Temperature dependence of the deviation from layer-by-layer growth
expressed in terms of the intensity of the minimum (open symbols) and of the maximum (filled
symbols) scattered intensity at 1 ML and 2 ML, respectively. The dashed lines indicate the intensity
scattered by the substrate, IS = 1, the intensity scattered by 1 ML PTCDA, I(q∗z , τML) = 0.33, and
the asymptotic scattering intensity for large t, I(q∗z ,∞) = 0.65.

the morphology depends strongly on the growth kinetics, which is much less understood.
Moreover, it is not obvious how the general description of growth modes compares to that
of inorganic materials, since the internal degrees of freedom (including molecular orientation)
may give rise to new phenomena.

One method particularly suitable for the controlled growth of organic thin films is organic
molecular-beam epitaxy (OMBE) [1]. In many cases a transition from layer-by-layer growth
to islanding, i.e. Stranski-Krastanov (SK) growth, has been observed [2–4] which is also com-
mon for inorganic heteroepitaxy [5]. The dynamics and the temperature dependence of this
2D-3D transition are fundamental aspects of heteroepitaxial growth which are, however, only
poorly understood [6].

In this letter, we present an X-ray diffraction study of Stranski-Krastanov growth of
3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA, fig. 1(a)) on Ag(111) as an archetypal
system for OMBE. In contrast to most previous studies [7–9], we focus on the temperature
dependence of the formation of the wetting layer and the kinetics of the subsequent 2D-3D
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Fig. 3 – Temperature dependence of the deviation from layer-by-layer growth quantified in terms of
δ1 and δ2. The inset explains the quantity δ1.

Fig. 4 – Scattered intensity calculated from the kinetic Monte Carlo simulations (see text).

of the deposition. The signal is normalized to the substrate scattering, IS = I(q∗z , t < 0), and
the time is normalized to the deposition time, τML, of one monolayer, which corresponds to the
intensity minimum. A typical growth measurement exhibits distinct intensity oscillations for
t ! 3τML, followed by a constant intensity during further deposition, similar to the observa-
tions for PTCDA/Au(111) [9]. The intensity oscillations correspond to layer-by-layer growth.
The transition to a constant intensity indicates the breakdown of layer-by-layer growth and
the onset of islanding characteristic of SK growth. As can be seen from the transition to a
time-independent scattering signal (associated with an equal probability for a given molecule
to be accommodated in even and odd layers), the islanding starts rapidly after completion of
a 2ML “wetting” layer.

Comparing the growth data for different temperatures (fig. 2(a)), we find that for T ≥
358K the oscillations are not visibly damped for t < 2τML. They are followed by a sharp
transition to a time-independent intensity (islanding). We observe three characteristic inten-
sity levels: The minimum intensity I(q∗z , τML) = 0.33 corresponding to one smooth ML of
PTCDA, the maximum intensity I(q∗z , 2τML) = 1 corresponding to two smooth monolayers
of PTCDA, and the temperature-independent asymptotic value I(q∗z ,∞) = 0.65 (see fig. 2).
For lower temperatures, the oscillations are progressively damped, and the 2D-3D transition
is smeared out as the temperature is lowered. Interestingly, the asymptotic intensity is in all
cases approximately 0.65, which can be shown to correspond to θodd(t) = θeven(t) + 0.5ML.
This observation is consistent with a Gaussian roughness profile after the initial layer-by-layer
growth. For T < 233K, instead of oscillations, only a monotonic decay of the intensity is
observed, approaching the asymptotic value 0.65 for long times. With increased damping
(i.e. lower T ), the position of the maximum shifts to coverages higher than 2ML (the value
expected for ideal layer-by-layer growth).

For a quantitative analysis, we consider the intensity at the first minimum (associated with
the completion of the first monolayer) and the first maximum (associated with the completion
of the second monolayer) and introduce the quantities δ1 and δ2 which describe the deviation
from the ideal layer-by-layer growth: δ1,2 denote the percentage of molecules adsorbed in the
“wrong” monolayer (see inset in fig. 3). At t = τML, θodd = 1− δ1, and θeven = δ1. If only two
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Abstract. – We present a real-time X-ray scattering study of the growth modes in organic
molecular-beam epitaxy. We have studied the model system 3,4,9,10-perylene-tetracarboxylic
dianhydride (PTCDA) on Ag(111) and find a temperature-dependent transition from layer-
by-layer growth to islanding. The transition smears out for low substrate temperatures, T ,
implying that the degree of the layer-by-layer growth of the wetting layer decreases with de-
creasing T . This behavior has been analyzed quantitatively and reproduced by kinetic Monte
Carlo simulations. The implications and consequences of our findings for the understanding of
the organic molecular-beam epitaxy are discussed.

Organic semiconducting compounds are attracting much attention in basic research and
technology due to their interesting electronic and optical properties. It has become evi-
dent that the exploitation of the full potential of these materials requires the understanding
and control of the structures on a molecular level. This presents a serious challenge, since
there are obviously significant differences compared to inorganic semiconductors in terms of
the interactions involved and also the shape anisotropy inherent in most of these molecules.
While the thermodynamically stable structure has been characterized for certain systems,
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