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Perovskite oxides

▪ The perovskite structure is very common among the

transition metal oxides for compounds having chemical

formula ABO3.

▪ There is an extensive number of combinations of

elements that form ABO3 perovskite compounds with

various electrical polarization, magnetism or electrical

transport natures/properties.

Cubic ABO3 perovskite structure
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Perovskite oxides

▪ A & B = cations

▪ In general B has 
smaller radius

▪ O = anion
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Perovskite oxides

▪ Perovskite lattice parameter formula based on ionic radii (empirical)

▪ Lattice parameters range between 3.7 Å and 4.3 Å

▪ Maximum lattice parameter mismatch ~ 16%

6

Lattice parameter

𝒂 = 𝟏. 𝟖𝟖𝟑𝟔 𝒓𝑩 + 𝒓𝑶 + 𝟏. 𝟒𝟖𝟗𝟖 𝒓𝑨 + 𝒓𝑶 𝟐 𝒓𝑩 + 𝒓𝑶 − 𝟏. 𝟐𝟎𝟔𝟐

ABO3

D. Schlom et al., J. Am. Ceram. Soc., 91; [8] 2429–2454 (2008)
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Perovskite oxides

▪ Compounds on the lower right have an

orthorhombically distorted perovskite

structure.

▪ Compounds on the upper left have a layered

hexagonal structure consisting partially of face-

sharing octahedra.

▪ In the middle is a band of cubic perovskite

materials. For highly polarizable A ions (Pb and

Ba), ferroelectric-type distortions dominate.

▪ Materials with a too small A ion result in the

ilmenite crystal structure while materials with a

too small B ion result in the pseudowollastonite

crystal structure

Crystal structures

Crystal structure adopted by ABO3 compounds at room

temperature as a function of the ionic radii of the A and B ions

for the case divalent A and tetravalent B cations.
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Origin of ferroelectric properties in BaTiO3

▪ Stability of the perovskite structure depends

on the relative ionic radii

▪ In SrTiO3:Ti-O bond ~ 1.95 Å

▪ Typical bond length

▪ Stable cubic structure

▪ In BaTiO3:Ti-O bond > 2.0 Å

▪ Stretched bond length

▪ Metastable structure

▪ Atoms may displace slightly off its central

position

▪ As these ions carry electrical charges, any

displacement will result in a net electric

dipole moment : BaTiO3 becomes a

ferroelectric oxide...
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Perovskite ABO3
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Perovskite oxides

▪ Perovskites structure with ABO3 formula but slight distortion from the cubic lattice will induce new

crystal structure

▪ Generally, in function of temperature, perovskite material can have cubic, tetragonal, orthorhombic,

monoclinic and/or rhombohedral phases.
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Crystal structures

Cubic Tetragonal Orthorhombic Monoclinic Rhombohedral
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Perovskite oxides
Crystal structures distortion

Unit cell and octahedral tiling for

cubic (undistorted) perovskite with

space group Pm3m

Unit cell and octahedral tiling for

rhombohedrally-distorted perovskite

with space group R-3c

Unit cell and octahedral tiling for

orthorhombically-distorted perovskite

with space group Pnma
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Functional oxides
▪ Transport properties

▪ Insulator / high-: LaAlO3, SrHfO3, SrZrO3

▪ Metals: BaSnO3, LaNiO3, SrRuO3

▪ Superconductors: (Ba,K)BiO3

▪ Topological insulators: KBiO3, BaBi(O,F) 3

▪ Dirac semimetals: SrIrO3

▪ Weyl semimetals: SrRuO3

▪ Electrical polarization properties

▪ Piezoelectric: Pb(Zr,Ti)O3

▪ Pyroelectric: (Ba,Sr)TiO3

▪ Ferroelectric: BaTiO3

▪ Magnetic properties

▪ Ferromagnetic: (La,Mn)SrO3

▪ Antiferromagnetic: (La,Sr)FeO3

▪ Multiferroic: BiFeO3
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Functional oxides

Functional 
oxides
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High-mobility 2DEG at the LAO/STO heterointerface

▪ Interface engineering between two insulating perovskite

oxides, LaAlO3 and SrTiO3, at an atomic scale.

▪ One interface presents an extra half electron [(LaO)+/(TiO2)
0]

or hole [(AlO2)
- / (SrO)0] per two-dimensional unit cell,

depending on the structure of the interface.

Ohtomo & Hwang, NATURE 427, 423 (2004)

▪ The hole-doped interface is

found to be insulating while

the electron-doped interface is

conducting, with extremely

high carrier mobility exceeding

10 000 cm2V-1s-1.

extra half electron

n-type interface

conducting

extra half hole

p-type interface

insulating

[(LaO)+/(TiO2)
0] 

[(AlO2)
- / (SrO)0]
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Large scale integration of perovskites materials

▪ Silicon integration (via epitaxy) is the only solution for future use of perovskite oxides ... 

SrTiO3(001) substrate

Size: 1cm x 1cm

Cost: > 250 €   

Si(001) substrate

Size: 300mm diameter

Cost: < 150 €   

14



Monolithic integration though epitaxy
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Epitaxial oxide challenges

▪ Crystal structure mismatch

▪ Perovskite vs. Diamond

▪ Chemical bonding mismatch

▪ Ionic bonds vs. Covalent bonds

16

ABO3 vs. Si

▪ Lattice parameter mismatch

Perovskite (ABO3)

Diamond

f ~ 25 %
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Pioneering work 
McKee et al., Oak Ridge Univ. (1990 ~ 2000)

Appl. Phys. Lett. 59, 782 (1991)

Science 293, 468 (2001)

Science 300, 1726 (2003)
17
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Thermal stability of MxOy/Si systems

▪ One of the important point was the thermal stability of the

oxide with Si.

▪ Phase diagrams can provide valuable insight in this issue.

▪ Diagram used to investigate the thermal stability of the

different compounds in presence of each other (i.e. M,

Si and O)

▪ Stable (solid) tie line: thermodynamic stability between

AC compound and B

▪ Unstable (dashed) tie line: BC compound and A not

thermodynamically stable BC

Schematics of a ternary-phase diagram: 

single tie line

18



public

Interface Engineering on Si

▪ Need for stable interface with Si

▪ Controlled Metal – Si – Oxygen reactions

▪ Thermodynamic approach compared with

experimental demonstration

▪ The elements 𝑴 having an oxide 𝑴𝑶𝒙 that

has been experimentally demonstrated to

be stable in direct contact with Si are

underlined:

▪ IVA: (Si)

▪ IIIA:Al

▪ IIA: Ca, Sr, Mg

▪ IIIB: Sc,Y

▪ IVB: Hf, Zr

▪ Lanthanites: La, Ce, Pr, Gd, ...

“A thermodynamic approach for interfacial layer screening” – D.G. Schlom & J.H Haeni
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Epitaxial oxide challenges
Si interface control: P(O2) vs. TG
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Epitaxial Strategy

▪ Molecular Beam Epitaxy (MBE)

▪ In-situ analysis growth technique

▪ Precise flux controlling at atomic level

▪ RIBER MBE49 200mm Tool @ imec

▪ 2” to 8” substrates

▪ Ba, Sr,  Bi, Ti, Hf, Zr, CaF2, Al2O3

▪ O2 & N2 remote plasma

▪ in-situ characterizations

▪ RHEED

▪ Crystalline state

21

Molecular Beam Epitaxy

▪ In-situ quartz microbalance

▪ Flow rate calibration
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▪ Evaporation control
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½ ML Sr Submonolayer engineering of Si(001)
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▪ A stable and natural oxidation barrier for 

Si(001) surface

▪ 2x1 surface reconstruction preserved

▪ Atomic concentration measured by RBS

▪ 0.48x1015 at/cm2 = ½ ML

▪ Ultra thin Sr-O-Si interfacial layer measured by 

AR-XPS
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Epitaxial Strategy:  Oxide/Si Interface Engineering

▪ Alkaline Submonolayer (Mg, Ca, Sr, …)

▪ Oxidation Barrier: stable “Si – O – Alkaline” interface

▪ Crystal Template: 45º Lattice rotation

▪ [100]Perovskite(001) // [110]Si(001)

▪ Effective lattice mismatch reduction

24

Alkaline Submonolayer



SrTiO3/Si(001) pseudo substrate: the key
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SrTiO3 buffer: the trick ....

▪ Different strategies for STO growth on Si

▪ 2 steps: LT deposition + recrystallization

▪ Different buffers: ½ ML SrO -> few nm (Ba,Sr)O

▪ Direct STO epitaxy onto Sr-Si(001)

▪ @ imec: direct STO epitaxy onto Sr-Si(001)

▪ TG ~ 300 C & P(O2) < 2e-7 Torr

▪ Smooth “Si-to-STO” transition by RHEED

▪ Strong streak diffractions lines from STO at early stage 

without amorphization step

26
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High Quality SrTiO3

▪ Excellent STO pseudo-substrate quality for functional 

oxides integration on Silicon

▪ Monocrystalline oxide

▪ (002) FWHM < 0.2°
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Low temperature epitaxy on Sr-Si(001)
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High Quality SrTiO3

▪ Excellent STO pseudo-substrate quality for functional 

oxides integration on Silicon

▪ RMS < 0.2 nm

▪ Sharp Si/STO interface
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Low temperature epitaxy on Sr-Si(001)
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Defects in perovskites
Anti-phase domains

Domain walls at step edges can be healed using the formation 

of quasi Ruddlesden-Popper layers
Scanning transmission electron micrograph of STO grown on 4º 

miscut vicinal Si(100). (Image courtesy of D. J. Smith).
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Defects in perovskites

▪ Strain relaxation via misfit dislocations

▪ Edge dislocations

▪ Burger vector: b = aBTO100 = 3.995 A

30
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Defects in perovskites

▪ The Sr/Ti stoichiometry in crucial, any slight variation would

drastically influence the layer crystallinity and generate high defect

density or amorphous / polycrystalline phases.

Importance of stoichiometry

G. Saint Girons et al., Chem. Mater. 2016, 28, 5347−5355 31
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Ferroelectricity

▪ Ferroelectric: material that shows spontaneous

and reversible dielectric polarization (Ps)

▪ Sub-family of pyro- and piezoelectric

materials

▪ Internal electric dipoles can be forced to

change direction by application of an

external electrical field

▪ Ferroelectric Hysteresis Loop

▪ The electric dipoles are physically linked to

the intrinsic properties of the ferroelectric

material.

34

Definition Piezoelectricity

Pyroelectricity

Ferroelectricity

• Electric dipoles 
generation by 
application of 
mechanical stress

• Electric dipoles 
generation by 
temperature 
variation

• Electric dipoles 
generation by 
spontaneous 
polarization
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BaTiO3

▪ Strong temperature dependence

▪ Crystalline phases

▪ Lattice parameter

▪ Dielectric constant 

▪ Polarization properties 

35

Structural properties
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Electro-Optical effect 

▪ E-O effect is the change of refractive optical index (𝑛) of a material 

induced by an external electric field

▪ Ideal for fast light modulation

▪ Applications / devices

▪ Photonic

▪ Optical modulator

▪ Beam forming

▪ Lidar

▪ Display

▪ Video holography

36

Video holography (Samsung)Optical modulators (IBM) Lidar (Bosch)
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Fundamentals

▪ Change of the refractive index

𝑛 𝐸 ≈ 𝑛 −
1

2
𝒓𝑛3𝐸 −

1

2
𝑹𝑛3𝐸2

▪ Pockels effect (with 𝒓 the Pockels coeff.)

▪ Figure of Merit (FOM) of the Pockels 

effect as 𝐹𝑂𝑀𝑃𝑜𝑐𝑘𝑒𝑙𝑠 = 𝑛3𝒓

▪ Kerr effect (with 𝑹 the Kerr coeff.)

▪ Polarization-optic effect: change of the optical 

index as function of the induced polarization in 

the materials

𝑟𝑖𝑗𝑘 = 𝜀0𝒇𝒊𝒋𝒎 𝜺𝒎𝒌 − 𝛿𝑚𝑘
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▪ Large electro-optic effects would be observed in

materials with:

▪ large polarization-optic response.

▪ Organic polymers

▪ Organic crystals

▪ large dielectric constant

▪ Ferroelectric oxides (KNO, BTO, ...)
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Material down selection

▪ LiNbO3 (substrate) is well developed and is already used in high-bandwidth optical communication systems

but has low EO properties

▪ Organic materials have high EO coefficient but unresolved problems of thermal and optical stability

▪ BaTiO3 compares favorably with both LiNbO3 and organic materials with respect to several of the figures of

merit for electro-optic devices but is hardly available in substrates
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MATERIALS 𝒓 (pm/V) 𝒏 (633 nm)  (low freq.) 𝒇𝜺𝟎 FOM (𝒏𝟑𝒓)

INORGANIC MATERIALS

• LiNbO3 r33 = 31.8 2.2 28 1.1 338

• KNbO3 r33 = 467 2.2 300 1.56 4 972

• BaTiO3 r42 = 1640 2.37 2500 0.65 21 830

ORGANIC CRYSTALS

• DAST 92 2.5 5.2 21.9 1 435

ORGANIC POLYMERS

• A-095.11 20 1.66 2.8 11.1 92

• CLD-1 130 1.65 3.5 52 584



public

Atomic flux vs. environment in Oxide-MBE

▪ Characterize the elemental partial pressure by XBS in function of the

environment: UHV, O2, N2

▪ Similar behavior for Sr, Ba and Ti metallic sources

▪ In oxygen ambient, native oxide is formed in surface of the metal

impacting the molecular beam, and function of the source temperature

and oxygen pressure
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Atomic flux dependence with oxygen
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Transition temperatures of strontium
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▪ Transition temperatures (metal dependent) at

which the oxidation effects are negligible

▪ 2 growth windows in MBE:

▪ Low growth rate (preferred for

crystallinity) but need to apply a

temperature gradient during growth

▪ High growth rate (not favorable for

crystalline quality) without temperature

gradient during growth

▪ Stoichiometry control during full

SrTiO3/BaTiO3 thickness is a key challenge !!!
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MBE BaTiO3 / SrTiO3 / Si(001) heterostructure

▪ Ultimate BaTiO3 quality with Ba gradient stochiometric BaTiO3

▪ Atomically smooth BTO achieved

▪ Monocrystalline heterostructure with low defectivity

▪ Optical response similar with bulk properties

▪ Large Pockels coefficient > 200 pm/V
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Topological materials: BaBiO3
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Topological insulators

▪ A topological insulator is an insulating material

that allows electric charge to flow along its

boundary in spin-polarized channels that are

topologically protected from impurity scattering.

▪ The physics of topological insulators involves

interactions between hosts of dimension 𝑑 and

boundaries of dimension 𝑑 − 1.

▪ Topological insulators can be subdivided into two

classes: three-dimensional (3D) and two-dimensional

(2D) systems. The former exhibits a 2D metallic

surface with a 3D bulk insulator, while the latter 2D

system consists of 1D gapless conductive edge

channels with an insulating 2D area. 3D TI’s2D TI’s

H. C. Manoharan, Nature Nanotechnology, Vol. 5, 2010, p. 477

43



public

Band structure evolution with band inversion
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Band inversion in Bi2Se3

▪ It is accepted that band inversion could

be induced by spin–orbit coupling

(SOC) but may also occur when the

strength of some other external parameter

such as structural distortion increases.

▪ In the case of Bi2Se3 compounds, without

spin–orbit coupling (SOC), the “conduction

band” is majorly made of Bi 𝑝𝑧 orbitals and

the “valence band”, is made of Se 𝑝𝑧
orbitals.

▪ The spin–orbit coupling (SOC), induce

conduction band that has contributions

from the band that made the valence band

originally and vice versa. This is called a

band inversion.
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Topological insulators

▪ Materials properties which are

invariant under topological

transformations property are

known as topological materials.

▪ Metallic states are formed by

topology effect.
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Topological insulators

▪ The research area of topological insulators experienced a

major extension when the concept was generalized to 3D

materials.

▪ Since then, the number of possible materials belonging to

the class of topological insulators has steadily increased.

However, only a few materials have been

experimentally confirmed to be a 3D topological

insulator.

▪ 3D topological insulators have a linear energy dispersion

of quasi-relativistic Dirac fermions with locked electron-

spin and momentum within the band gap formed by the

3D bulk states.
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Schematics of the band structure of a 3D

topological insulator with surface states

within the band gap.
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TI thin films: structural quality

▪ 3D TI can be grown using MBE technique on

various substrates (e.g. Sapphire, Si(111), III-

V(111), Graphene, ...)

▪ Surface morphologies and thickness dependent

electronic structures are properties

characterized by RHEED, Atomic Force

Microscopy (AFM), Scanning Tunneling

Microscopy (STM) and Transmission Electron

Microscopy (TEM).

▪ Topological states can be experimentally

demonstrated by imaging the electronic

band structure using Angle Resolved

Photoelectron Spectroscopy (ARPES).
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Stability and ageing effects

▪ Defects like group-VI vacancies (Se, Te, ...)

makes these layers very reactive to

environment (even in UHV ...), especially air

whereby oxygen will diffuse easily through

the vacancies network and oxidize the TI

surface, ...

▪ Layer stability and ageing effects of

these V2VI3 compounds whereby the thin

film properties change over time, are also

crucial problems that need to be further

addressed...
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Outlooks
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Novel functional oxides for quantum technologies
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NOTICE project overview
Molecular Beam Epitaxy [= flexibility & atomic control]
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Wrap up

▪ Large field of potential applications for functional

perovskites / oxides

▪ Molecular Beam Epitaxy: the only solution to enable single

crystal oxide growth on Si(001)

▪ The SrTiO3 buffer quality on Silicon is crucial

▪ BaTiO3 is of strong interest for optical applications

▪ Novel materials with topological protection could enable

stable quantum applications
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