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= Functional oxide materials (“Oxitronic”)
= Perovskite's materials

" Properties / applications

= Monolithic integration on Si(001) though epitaxy

" Thermodynamics

= Buffer layer: SrTiO;

= Alternative options

= New challenges / new applications
* Pockels materials: BaTiO;

= Topological materials: BaBiO,

= Conclusions and perspectives
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nctional oxide materials



Perovskite oxides

The perovskite structure is very common among the
transition metal oxides for compounds having chemical

formula ABO;.

There is an extensive number of combinations of
elements that form ABO; perovskite compounds with
various electrical polarization, magnetism or electrical
transport natures/properties.

public



Perovskite oxides

IA Noble
H 1A I[ITA IVA VA VIA VIIA He
Perovskite (ABO,) Be B¢ N n Fj e
Si | P| S |Cl|Ar
IIIB IVB VB VIB VIIB VIIIB IB IIB
As | Se | Br | Kr
Rb X X . AU C ] D Te Xe
Ba [ Re | Os Pt | Au Pb B Po | At | Rn
Fr | Ra| I | Rf | Ha| Sg | Ns | Hs | Mt
"= A & B = cations
= In general B has
= O =anion + Pa U Np Pd A &
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Perovskite oxides
Lattice parameter

=1.8836(; + 19) + 1.4898|r, + roV2(rz + 19)| — 1.2062
Q w . o e o . a _:;
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LaS ‘ LaSrGaO, |LSAT l)\\k() NdScO, Substrate lattice (A)

| .l(l\l() ThScO, \‘m.?d')
NdGaO GdScO, KTaO

D. Schlom et al,, ].Am. Ceram. Soc., 91; [8] 2429—-2454 (2008)

Perovskite lattice parameter formula based on ionic radii (empirical)
= Lattice parameters range between 3.7 A and 4.3 A

= Maximum lattice parameter mismatch ~ 16%
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Perovskite oxides

Crystal structures
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Crystal structure adopt

B-site ion radius (A)

ed by ABO; compounds at room

temperature as a function of the ionic radii of the A and B ions
for the case divalent A and tetravalent B cations.

umec.: .

have an
perovskite

Compounds on the
orthorhombically
structure.

lower right
distorted

Compounds on the upper left have a layered
hexagonal structure consisting partially of face-
sharing octahedra.

In the middle is a band of cubic perovskite
materials. For highly polarizable A ions (Pb and
Ba), ferroelectric-type distortions dominate.

Materials with a too small A ion result in the
ilmenite crystal structure while materials with a
too small B ion result in the pseudowollastonite
crystal structure
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Origin of ferroelectric properties in BaTiO,

Perovskite ABO;

Stability of the perovskite structure depends

on the relative ionic radii

= In SrTiO;:Ti-O bond ~ 1.95 A

= Typical bond length

= Stable cubic structure

In BaTiO,:Ti-O bond > 2.0 A

= Stretched bond length
= Metastable structure

= Atoms may displace slightly off its central

position

As these ions carry electrical charges, any
displacement will result in a net electric
dipole moment : BaTiO; becomes a
ferroelectric oxide...
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Perovskite oxides
Crystal structures

= Perovskites structure with ABO; formula but slight distortion from the cubic lattice will induce new
crystal structure

= Generally, in function of temperature, perovskite material can have cubic, tetragonal, orthorhombic,
monoclinic and/or rhombohedral phases.
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Perovskite oxides
Crystal structures distortion

Unit cell and octahedral tiling for Unit cell and octahedral tiling for Unit cell and octahedral tiling for
cubic (undistorted) perovskite with rhombohedrally-distorted perovskite orthorhombically-distorted perovskite
space group Pm3m with space group R-3c with space group Pnma

lmec ..........
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Irisulieers

Functional oxides

= Transport properties

IMetals
SEMICONAUCTOLrS

= Insulator / high-x: LaAlO;, SrHfO,, SrZrO, ransport
= Metals: BaSnO;, LaNiO,, SrRuO, Jopological Insulucors T
= Superconductors: (Ba,K)BiO, Superconductors
= Topological insulators: KBiO;, BaBi(O/F)
: , Colossal
= Dirac semimetals: SrlrO, Magneto Polar-metals

"  Weyl semimetals: SrRuQO; Resistivity
= Electrical polarization properties
= Piezoelectric: Pb(Zr, Ti)O,

= Pyroelectric: (Ba,Sr)TiO; hermomagnetics
" Ferroelectric: BaTiO, agnetism polar
= Magnetic properties

Paramagnetics

IZatIoNn

iferromagnetics
= Ferromagnetic: (La,Mn)SrO;

= Antiferromagnetic: (La,Sr)FeO, [amagnetics

= Multiferroic: BiFeO,
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Functional oxides
Applications

B
t Array of phase and Grating array
Tunable laser amplitude tuners

FeFET
A

oﬁ . Ferroelectric memor
Video holography 0""01 Y

LDLDLDL

- -

SC/TI
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Ohtomo & Hwang, NATURE 427, 423 (2004)

extra half electron
n-type interface
conducting

extra half hole
p-type interface
insulating

mmec.i

[(AIO,) / (5rO)7] |

<A

(AIO,)
(La0)*
(AIO,)
(LaO)*
(TiO,)°
(Sr0)°
(TiO,)°

(SrO)?

;:[_wr’:“-

(AIO,)-

(AIO,)
(SrO)°
(TiO,)°
(SrO)°

(Ti0,)°

LaAlO, (260 A) /SrTiO,(001)

igh-mobility 2DEG at the LAO/STO heterointerface

The hole-doped interface is
found to be insulating while
the electron-doped interface is
conducting, with extremely

high carrier mobility exceeding
10 000 cm?V's!,

= Interface engineering between two insulating perovskite
oxides, LaAlO; and SrTiO;, at an atomic scale.

= One interface presents an extra half electron [(LaO)*/(TiO,)?]

or hole [(AIO,) / (SrO)°] per two-dimensional unit cell,

depending on the structure of the interface.
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Large scale integration of perovskites materials

SrTiO;(001) substrate Si(001) substrate

Size: lecm x lem Size: 300mm diameter
Cost: > 250 € _ Cost: < |50 €




ic integration though epitaxy



Epitaxial oxide challenges

ABO; vs. Si
= Crystal structure mismatch = Lattice parameter mismatch
" Perovskite vs. Diamond @ Diamond
, ' T T T T T T T T T T @ Nacl
D__Iamond | Qﬂ o Perovskite
Perovskite (ABO;) S ¥ "8‘., ’ E
B=20
@ | 9
4
&
00
-U:‘]
c |
3]
o 2
|
= Chemical bonding mismatch 0 ; ?""ﬂ. AL ] M

Bl MR W R R R P PP PGP P

= |onic bonds vs. Covalent bonds .
Lattice parameter (A)
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Pioneering work
McKee et al., Oak Ridge Univ. (1990 ~ 2000)

P 1301, .
Science 293, 468 (2001)

A 0
(110) BaO (010) BaTiO, AO
(a) (b) \
Appl. Phys. Lett. 59, 782 (1991) A ASi:— 5

Science 300, 1726 (2003)
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Thermal stability of M,O,/Si systems

= One

of the important point was the thermal stability of the

oxide with Si.

= Phase diagrams can provide valuable insight in this issue.

‘umec:

©

Diagram used to investigate the thermal stability of the
different compounds in presence of each other (i.e. M,

Si and O)

Stable (solid) tie line: thermodynamic stability between
AC compound and B

Unstable (dashed) tie line: BC compound and A not
thermodynamically stable

erc

oo, 18

B

Schematics of a ternary-phase diagram:
single tie line




Interface Engineering on Si

“A thermodynamic approach for interfacial layer screening” — D.G. Schlom & |.H Haeni

<§> = Radioactive

= Need for stable interface with Si
= Controlled Metal — Si — Oxygen reactions
* Thermodynamic approach compared with
experimental demonstration
*= The elements M having an oxide MO, that
has been experimentally demonstrated to
be stable in direct contact with Si are

underlined:
= |V,: (Si)
= Al
= |l,:Ca, Sr, Mg
= |llg:Sc,Y
= Vg Hf, Zr

= Lanthanites: La, Ce, Pr, Gd, ...

- ?Zw? = Not a solid at 1000 K et
1A (1) = Failed reaction 1: Si+MO,— M + SiO, [IIA IVA VA VIA VIIA
Li | Be| @ =Failed reaction2: Si+MO,— MSi, + SiO, : 3
6 = Failed reaction 6: Si +MO,—M +MSi,0O, ) N
Mg : Al | Si
[IIB IVB_VB VIB VIIB_—VIIB— _IB _IIB
Ca | Sc \
\ \
Sr | Y |Zr
+ | HE \
N\
1.
i
Insufficient Thermodynamic Data to Complete Calculations Experimentally Demonstrated

19
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Epitaxial oxide challenges
Si interface control: P(O,) vs. T

morphous oxide
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Amorphous oxide
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Epitaxial Strategy

Molecular Beam Epitaxy

* Molecular Beam Epitaxy (MBE)
" |n-situ analysis growth technique
= Precise flux controlling at atomic level

= RIBER MBE49 200mm Tool @ imec

= 27 to 8” substrates

E.I-ectron T '

= Ba,Sr, Bi,Ti, Hf, Zr, CaF,,Al, O, qun (Ti) - N\ .
. OZ & N2 remote plasma microbalance Y
" in-situ characterizations
= RHEED = |n-situ quartz microbalance = Mass spectrometers (x6)
"= Crystalline state " Flow rate calibration = Evaporation control
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/2 ML Sr Submonolayer engineering of Si(001)

Sr surf. eng.

N7 BN VA BNV

ABNIAE AN
/BENV/ABNY
FINALLIN LN

Oxidation

2x1-Sr/Si(001)

Dimerized Si(001) '~ ML Sr-Terminated
surface Surface

N/ BN VSNV
ZEN DNVIS T 70
WA KA Z T NE7
TINA JIN T JEY

» [100]Perovskite(001) // [110]Si(001)

SrTiO; growth
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SrO Interfacial Layer
g Sr = 0.48x10'> at/cm?
/> ML SFO/Si(001) s o
‘ < :
R M ¢ ' 'R ' * E i
R 0 100 200 300 400 500

Channel

= A stable and natural oxidation barrier for P3N |
Si(001) surface - . _
= 2x| surface reconstruction preserved | '
= Atomic concentration measured by RBS
= 0.48x10'> at/cm? =2 ML
= Ultra thin Sr-O-Si interfacial layer measured by
AR-XPS

Intensity (arb. units)

105 104 103 102 101 100 99 98 97
Binding Energy (eV)

23
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Epitaxial Strategy: Oxide/Si Interface Engineering

Alkaline Submonolayer

=  Alkaline Submonolayer (Mg, Ca, Sr, ...)
= Oxidation Barrier: stable “Si — O — Alkaline” interface
= Crystal Template: 45° Lattice rotation
= [100]Perovskite(001) // [110]Si(001)

= Effective lattice mismatch reduction

° Diamond 0 Diamond
T T T T T T T @ Nadl Nar | 0000000000
A i} o Perovskite o Perovskite 0
6 G 5 - sl SAHIO,
o % s $ol T
| ° {hO_ 9 o BoO)
®, % |
AIPeS | 3
& L
R - 2
N | 1 L
o0 2 l:‘az
I I * ]
AR il P e e
o | ". | 1IN Ge 0 i . i : . Ge . BalkO,

“uec.... S D G L R R R R SR
B Lattice parameter (A) Lattice parameter (A)
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00l) pseudo substrate: the key



SrTiO; buffer: the trick ....

= Different strategies for STO growth on Si
= 2 steps: LT deposition + recrystallization
= Different buffers: /2 ML SrO -> few nm (Ba,Sr)O
= Direct STO epitaxy onto Sr-Si(001)

"= @ imec:direct STO epitaxy onto Sr-Si(001)
= T;~300C &P(O,) <2e-7Torr
= Smooth “Si-to-STO” transition by RHEED

= Strong streak diffractions lines from STO at early stage
without amorphization step

m I.:..':.‘";.‘?‘{:; : %
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igh Quality SrTiO,

Low temperature epitaxy on Sr-Si(001)

3.5x10' F—

= Excellent STO pseudo-substrate quality for functional o 3000 —
. . . o |05 S 250t
oxides integration on Silicon g o] Si (004)
= Monocrystalline oxide my g L0
N |04 € 1oxio'f
= (002) FWHM < 0.20 g 5.0x10%
0o
; I 03 Omega (Degres)
20MLs (~8nm) g
o
e 10
3
£ STO (002)
10’

o0 Il M a1 J b

20 22 24 26 28 30 32 34

Omega (Degres)
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igh Quality SrTiO,

Low temperature epitaxy on Sr-Si(001)

= Excellent STO pseudo-substrate quality for functional
oxides integration on Silicon

= RMS<0.2nm B sy

.....
//////
.....

= Sharp Si/STO interface e i,

# nyann
"fo.o'0'5"‘.\.\.‘..'.\'.-."...:;.'. i 'k & "‘
. 3 . . . J E
o . ; B r
. p ' v ' J ' ' '

Ra = 0.1278 nm

0.00 nm

28
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Defects in perovskites
Anti-phase domains

Rock salt
Rock salt SrTiO, film

=
R
N
-

»
‘;;;_ l < B
1

4

AR AR AR AKARAR AR P (
K l\ k "%\/\/k/k/k/k/k/l\: \;‘(‘( N
\\\\\\\\/\(\(((

S|I|con substrate

Domain walls at step edges can be healed using the formation
of quasi Ruddlesden-Popper layers

29
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Scanning transmission electron micrograph of STO grown on 4°
miscut vicinal Si(100). (Image courtesy of D. J. Smith).
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Defects in perovskites
Misfit dislocations
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= Strain relaxation via misfit dislocations

= Edge dislocations
= Burger vector:b = ag(100) = 3.995 A
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Defects in perovskites
Importance of stoichiometry

Sample

= The Sr/Ti stoichiometry in crucial, any slight variation would
drastically influence the layer crystallinity and generate high defect
density or amorphous / polycrystalline phases.

Sample D

Sample E

. G. Saint Girons et al,, Chem. Mater. 2016, 28, 5347-5355
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allenges / new applications



Pockels materials : BaTiO;



Ferroelectricity
Definition

= Ferroelectric: material that shows spontaneous
and reversible dielectric polarization (P,)

= Sub-family of pyro- and piezoelectric
materials

" Internal electric dipoles can be forced to
change direction by application of an
external electrical field

= Ferroelectric Hysteresis Loop
" The electric dipoles are physically linked to

the intrinsic properties of the ferroelectric
material.

34

* Electric dipoles

Piezoelectricity

generation by
application of
mechanical stress

Pyroelectricity

Electric dipoles
generation by
temperature
variation

Ferroelectricity

Electric dipoles
generation by
spontaneous
polarization
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Temperature (°C)

. 150  -100 -50 0 50 100 150
BaTiO, a0 70— - —— - -
_ R _
Structural properties o 4 A
= 402 ' C A
= a
= Strong temperature dependence g - o al
2401 LA ® v v
= Crystalline phases S 20| A
. ’ ] A
= Lattice parameter 3 . " A 4 A
S 3.99
= Dielectric constant k& - a./ ° a
o . 3.98 o
= Polarization properties - r’
3.97 I I I
thombohedral 1 orthorhombic 1 tetragonal | cubic
. L . L . J
Rhombohedral Orthorhombic : Tetragonal Cubic 10000 A
R3m Cmm2 P4mm Pm-3m
Ps//[I11] - Psi[oll] Ps/I[001] Ps=0 *% i
f % 7500 V
c _
S Tg a-axis b
LCJ 5000 %
2 | MAA M
- r \ A -
o T 00000 000 6 a0 \

o o®

0 —n—a—aag—i
-150 -100 -50 0 50 100 150

Temperature (°C)
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Electro-Optical effect n(E)

= E-O effect is the change of refractive optical index (n) of a material
induced by an external electric field

1 ¥

" |deal for fast light modulation 0

= Applications / devices

= Photonic
= Optical modulator —
= Beam forming '&’ﬁ!
= Lidar ————e
= Display
= Video holograph
graphy Optical modulators (IBM) Lidar (Bosch) Video holography (Samsung)

.
o0

. .
3008
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=
o
a1

Fundamentals S .S o
E 104 o Q § =
o i o
£ E - T o g
N 103l - S (g— (Q{ >
5 0 33 g g e LS
- 2 6 O o
= Change of the refractive index & 107 ° 3 = 2
1 1 S ° 0 < — -
n(E) ~ n—=1rn3E — =Rn3E? S 10th g 3G
2 2 3 |8 5 1
. X @)
= Pockels effect (with 1 the Pockels coeff.) S 10% 2 e
ol
= Figure of Merit (FOM) of the Pockels 101 e .
3 Materials

effect as FOMp,ce1s = N°T

* Kerr effect (with R the Kerr coeff) = Large electro-optic effects would be observed in

materials with:
= Polarization-optic effect: change of the optical .

index as function of the induced polarization in
the materials

Tijk = €of ijm(

f

... Polarization-optic coef.

large polarization-optic response.
* Organic polymers
— 5. = Organic crystals
= Jarge dielectric constant
Dielectric loss " Ferroelectric oxides (KNO, BTG, ...)

Dielectric constant

37
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Material down selection

MATERIALS r (pm/V) n (633 nm) ¢ (low freq.) feo FOM (n3r)
INORGANIC MATERIALS
* LiINbO, ry; = 31.8 2.2 28 .1 338
* KNbO, ry; = 467 2.2 300 1.56 4972
* BaTiO, ry, = 1640 2.37 2500 0.65 <2I 83(;\>
ORGANIC CRYSTALS
« DAST 92 2.5 5.2 21.9 | 435
ORGANIC POLYMERS
e A-095.11 20 1.66 2.8 1.1 92
* CLD-I 130 .65 3.5 52 584

= LiNbO; (substrate) is well developed and is already used in high-bandwidth optical communication systems
but has low EO properties

= Organic materials have high EO coefficient but unresolved problems of thermal and optical stability

= BaTiO; compares favorably with both LiINbO; and organic materials with respect to several of the figures of
merit for electro-optic devices but is hardly available in substrates

e

38
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Atomic flux vs. environment in Oxide-MBE

= Characterize the elemental partial pressure by XBS in function of the
environment: UHVY, O,, N,

107°

9x10710

8x101°0
7x10710

6x10710
5x10710

4x10710

3x1071°

Pressure (mbar)

2x1071°

10

&:z

0.0

—— Nitrogen
—— Vacuum

—— Oxygen

Oxide

0

1000
Time (s)

=  Similar behavior for Sr, Ba and Ti metallic sources

* In oxygen ambient, native oxide is formed in surface of the metal

impacting the molecular beam, and function of the source temperature
and oxygen pressure

“umec
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2000

Substrate

1AM
0,

S oloho L0 4O ¢¢

EEB8ROPOMD

0P PO ©

GO

:F‘-I—O-""\"M‘

Oxygen (atomic)

Layer

Ti
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Atomic flux dependence with oxygen
Transition temperatures of strontium

400 425 450 475 500 525 550 575 600 = Transition temperatures (metal dependent) at
1E-5 LA L S S S S E—— E—— —— —— O = . . . . .
3 ] which the oxidation effects are negligible

= 2 growth windows in MBE:

" Llow growth rate (preferred for
crystallinity) but need to apply a
| 1E-6 temperature gradient during growth

* High growth rate (not favorable for
crystalline quality) without temperature
gradient during growth

Oxygen pressure (mbar)
m
(o))

= Stoichiometry control during full
1E-7 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1E-7 . . . .
400 425 450 475 500 525 550 575 600 SI‘TIO3/BaTIO3 thlckness IS a key challenge !!!
Transition temperature (°C)

umec ;.
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MBE BaTiO; / SrTiO, / Si(001) heterostructure

1.50 nm

3.4 T T T T j T ) T

3.2

190 3.0

0.50 2.8

2.6
0.00

24}

2.2

~0.50 [
2.0

-1.00

18 L 1 L 1 L 1 L 1 L
250 500 750 1000 1250 1500
Wavelenght (nm)

-1.50

= Ultimate BaTiO; quality with Ba gradient stochiometric BaTiO,
= Atomically smooth BTO achieved
= Monocrystalline heterostructure with low defectivity
= Optical response similar with bulk properties
= Large Pockels coefficient > 200 pm/V

41
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Topological materials: BaBiO,



Topological insulators

A topological insulator is an insulating material
that allows electric charge to flow along its
boundary in spin-polarized channels that are
topologically protected from impurity scattering.

The physics of topological insulators involves
interactions between hosts of dimension d and
boundaries of dimension d — 1.

Topological insulators can be subdivided into two
classes: three-dimensional (3D) and two-dimensional
(2D) systems. The former exhibits a 2D metallic
surface with a 3D bulk insulator, while the latter 2D
system consists of |D gapless conductive edge
channels with an insulating 2D area.

‘umec...
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3D topological insulators

Pointland Lineland Flatland Spaceland Lands of higher

d\mensmn
d=0 d=1

/Q@'

Quantum dots, Quantum wires, 2DEGs Bulk crystals
quantum corrals nanotubes graphene and fluids

2D topological insulators

H. C. Manoharan, Nature Nanotechnology, Vol. 5, 2010, p. 477

3DTP’s
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Band structure evolution with band inversion

Regular insulator Topological Dirac Semimetal  Topological insulator
A E (k) o k? E(k) <k Epuir (k) o k?
Ebound (k) < k
CB CB CB
Er
+ + +
VB VB VB
Band inversion

rz F r
Bi,Se; band structure
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Band inversion in Bi,Se;

= It is accepted that band inversion could
be induced by spin-orbit coupling
(SOC) but may also occur when the
strength of some other external parameter
such as structural distortion increases.

* In the case of Bi,Se; compounds, without
spin—orbit coupling (SOC), the “conduction Q7
band” is majorly made of Bi p, orbitals and
the “valence band”, is made of Se p,
orbitals. 053 A ]
= The spin—orbit coupling (SOC), induce

conduction band that has contributions

from the band that made the valence band  Hybridization Chemical  Crystal sOC
originally and vice versa. This is called a bonding field
band inversion.

‘umec..
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Topological insulators

topological
conduction insulator i insulator insulator
|
band ]
!
|
| i
= Materials properties which are metallic ahr " A
invariant ~ under  topological boundary '
transformations property  are states ':‘ ':‘
. . | |
known as topological materials. | !
| |
* Metallic states are formed by valence ! :
| |
topology effect. band | !
™ .
WY 2l B
+2mv)}'t
|
Vir) o (r,8) 8
)
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Topological insulators

= The research area of topological insulators experienced a conduction

major extension when the concept was generalized to 3D
materials.

= Since then, the number of possible materials belonging to
the class of topological insulators has steadily increased.
However, only a few materials have been
experimentally confirmed to be a 3D topological

Energy

2D surface °
states '

insulator.
= 3D topological insulators have a linear energy dispersion
of quasi-relativistic Dirac fermions with locked electron- momentum
spin and momentum within the band gap formed by the Schematics of the band structure of a 3D
3D bulk states. topological insulator with surface states

within the band gap.
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TI thin films: structural quality

= 3D Tl can be grown using MBE technique on
various substrates (e.g. Sapphire, Si(111), Ill-
V(I'Il), Graphene,...)

=  Surface morphologies and thickness dependent
electronic structures are properties
characterized by RHEED, Atomic Force
Microscopy (AFM), Scanning  Tunneling
Microscopy (STM) and Transmission Electron
Microscopy (TEM).

= Topological states can be experimentally
demonstrated by imaging the electronic

band structure using Angle Resolved J.

Photoelectron Spectroscopy (ARPES). D o4 oo o4
RHEED, AFM, TEM and ARPES analysis of 3D-TIs @ imec

‘uec ..




Stability and ageing effects

After 3h in UHV

After growth

0.0

3 o1
é 0.2
= Defects like group-VI vacancies (Se, Te, ...) ; 0.3
makes these layers very reactive to 5 o4
environment (even in UHV ..), especially air os-Jag
whereby oxygen will diffuse easily through 010 000 0.0
the vacancies network and oxidize the TI LR
surface, ... After growth 5min air exposure 24h air exposure

* layer stability and ageing effects of
these V,VI; compounds whereby the thin
film properties change over time, are also
crucial problems that need to be further
addressed...

-0.6 0.4 -0.2 0.0 0.2 0.4 0.6 —0.4 0.0 0.4

-0.6-0.4-0.20.0 0.2 0.4 0.6
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Outlooks

Novel functional oxides for quantum technologies

Irisukieers

IMELalS
SEMICONAUCEOrS)

Topological Insulators

Dirac Semimetal
Superconductors

Colossal

Magneto Polar-metals
Resistivity

Paramagnetics

Ferromagnetics
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NOTICE project overview

Molecular Beam Epitaxy [= flexibility & atomic control]

o (Ba,KK)BiO; ®
Superconductor (SC)

\m-- ml
e B & |

S — “— —— s — —

Topological interface

Ib. SC perovskite

3. Majorana qubit

b
>

Electrical resistivity

n

>

Temperature

(Ba,K)BiO,

,': BaB|O3

Buffer

MgO & Si
(for Si sub.) 5 !

substrates

L)

1a. Tl perovskite
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2.T1/SC interface
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Wl”ap UP Substrate
3
L1112 2.3
. . L . Tebekepemangingg.  Laver
= large field of potential applications for functional _ nn ::" ey
perovskites / oxides ! .::iiggﬁi
= Molecular Beam Epitaxy: the only solution to enable single 8080V SN
crystal oxide growth on Si(001) 8,8,8““-.%-.0:-.0-.0-:‘»
= The SrTiO; buffer quality on Silicon is crucial S Espasasai o

= BaTiO; is of strong interest for optical applications

= Novel materials with topological protection could enable
stable quantum applications

Metal 2 Oxygen Metal |
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